/* Boitarire software Plays a sound through an external MP3 module when triggered by external sensor : - inclination switch - accelerometer module - touch sensors Configuration is selected through compilation switches. Uses an editable playlist allowing any song order, up to 255 different songs in the playlist, individual repetition number for eah song. created 25 nov 2021 by Florian Savard This example code is in the public domain. https://code.electrolab.fr/Flax/boitarire */ #include // Defines - Macros - Constants #define SENSOR_INCLINATION //#define SENSOR_ACCELEROMETER //#define SENSOR_TOUCH_SENSOR1 //#define SENSOR_TOUCH_SENSOR2 // Other constants //Hardwaere constatnts : do not modify >_< ! #define PIN_SENSOR_POSITION 9 // Position sensor input #define PIN_TOUCH_SENSOR1 8 // Touch sensor 1 input #define PIN_TOUCH_SENSOR2 5 // Touch sensor 2 input #define PIN_GROUND_SWITCH 7 // MP3 module ground switch command output //Calibration constants : do adjust :-) //#define MP3_RESET // //#define DEBUG_UART_ACCELEROMETER // Warning : conflict with MP3 player #define PLAY_BLANK_DELAY 1000 // Blanking when playing a sound (ms): Must be longer than the played sample (recommended : sample duration + 100ms) #define DELAY_MP3_RESET 100 // Time of ground cut of MP3 module for re-init (ms) : Adjust only if hardware proiblems with new revisions of the mp3 module #define DEBOUNCE_DELAY 200 // Position sensor input debounce (ms) #define ACCEL_THRES_GYX 9999 // Detection threshold for X axis acceleration #define ACCEL_THRES_GYY 9999 // Detection threshold for Y axis acceleration #define ACCEL_THRES_GYZ 25000 // Detection threshold for Z axis acceleration #define PLAYLIST_LENGTH 4 // Number of songs in the playlist // Typedefs // Main state machine : start actions typedef enum { //Initialisation STM_INIT, //Wainting for input (capteur) STM_IDLE, //When input, play sample STM_PLAY, //Waiting after playing sample STM_BLANK, //Optional hardware reset of the MP3 module (See calibration constants for activation) STM_MP3_RESET, } tStateMachine; typedef enum { STM_DEBOUNCE_IDLE_0, STM_DEBOUNCE_IDLE_1, STM_DEBOUNCE_DETECT_0, STM_DEBOUNCE_DETECT_1, STM_DEBOUNCE_DEBOUNCE_0, STM_DEBOUNCE_DEBOUNCE_1, } tStateMachineDebounce; typedef struct { uint8_t song_index_u8; // Index of the song in the device /!\ counts from 0 uint8_t cycles_number_u8; // Number of times the song must be played before switching to the next } tSongItem; // Constant variables /* Indifference table for songs cycles * Contains the indexes of the songs to be played and the number of times each one must be played. * Contains couples {index of the song in the MP3 device memory, number of times the song must be played}, * Playlist cycles from first element to last and loops. * Don't forget to update PLAYLIST_LENGTH define. */ const tSongItem cPlaylistIndif_TA[PLAYLIST_LENGTH] = { {0, 2}, {2, 3}, {1, 1}, {3, 2}, }; // Local variables String inputString = ""; // a String to hold incoming data bool stringComplete = false; // whether the string is complete unsigned long debounce_delay; int input_position_sensor, input_touch_sensor1, input_touch_sensor2; unsigned long play_blank_delay, mp3_reset_delay; unsigned long millis_temp; const int MPU=0x68; int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ; bool accel_detect; uint8_t song_cycles_cnt_u8; // Counts the number of times the current song has been played uint8_t song_playing_current_u8; // Holds the index of the playlist song actually being played // State machines states tStateMachine stmState; tStateMachineDebounce stmDebounceState; // Local function prototypes void ReadPlayState (void); void WritePlay (void); void WritePlaySong (uint16_t index); uint8_t CrcCalculate (uint8_t *buff, uint8_t size); // Setup function void setup() { // Initialize serial: Serial.begin(9600); // Reserve 200 bytes for the inputString: inputString.reserve(200); // Position sensor input pin - See hardware constants for pin definition - Input pull-up pinMode(PIN_SENSOR_POSITION, INPUT_PULLUP); // Touch sensor 1 input pin - See hardware constants for pin definition - Input no pull pinMode(PIN_TOUCH_SENSOR1, INPUT); // Touch sensor 2 input pin - See hardware constants for pin definition - Input no pull pinMode(PIN_TOUCH_SENSOR2, INPUT); // LED output for visualisation pinMode(LED_BUILTIN, OUTPUT); // MP3 module ground switch command - See hardware constants for pin definition - Output push-pull pinMode(PIN_GROUND_SWITCH, OUTPUT); //Initialise variables, do not define constants value here play_blank_delay = 0; mp3_reset_delay = 0; stmState = STM_INIT; stmDebounceState = STM_DEBOUNCE_IDLE_0; debounce_delay = 0; input_position_sensor = LOW; input_touch_sensor1 = LOW; input_touch_sensor2 = LOW; song_cycles_cnt_u8 = 0; song_playing_current_u8 = 0; #ifdef SENSOR_ACCELEROMETER // Accelerometer setup Wire.begin(); Wire.beginTransmission(MPU); Wire.write(0x6B); Wire.write(0); Wire.endTransmission(true); // Set FIFO enable register /* Wire.beginTransmission(MPU); Wire.write(0x23); Wire.write(0x78); Wire.endTransmission(true);*/ // Set filters Wire.beginTransmission(MPU); Wire.write(0x1A); Wire.write(0x06); Wire.endTransmission(true); #endif accel_detect = false; // Connect ground for MP3 module digitalWrite(PIN_GROUND_SWITCH, HIGH); } // Main loop void loop() { // print the string when a newline arrives: for debug purposes only if (stringComplete) { Serial.println(inputString); switch (inputString[0]) { case 0x30: // Play first song in the device WritePlaySong(1); break; case 0x31: // Play second song in the device WritePlaySong(2); break; default: break; } // clear the string: inputString = ""; stringComplete = false; } #ifdef SENSOR_ACCELEROMETER // Accelerometer communication Wire.beginTransmission(MPU); Wire.write(0x3B); Wire.endTransmission(false); Wire.requestFrom(MPU,14,true); AcX=Wire.read()<<8|Wire.read(); AcY=Wire.read()<<8|Wire.read(); AcZ=Wire.read()<<8|Wire.read(); Tmp=Wire.read()<<8|Wire.read(); GyX=Wire.read()<<8|Wire.read(); GyY=Wire.read()<<8|Wire.read(); GyZ=Wire.read()<<8|Wire.read(); if ((GyX > ACCEL_THRES_GYX) || (GyY > ACCEL_THRES_GYY) || (GyZ > ACCEL_THRES_GYZ) || (GyX < ((int16_t)(-1) * ACCEL_THRES_GYX)) || (GyY < ((int16_t)(-1) * ACCEL_THRES_GYY)) || (GyZ < ((int16_t)(-1) * ACCEL_THRES_GYZ))) { accel_detect = true; } else { accel_detect = false; } #else accel_detect = false; #endif #ifdef SENSOR_INCLINATION // Read instantaneous value of position sensor input_position_sensor = digitalRead(PIN_SENSOR_POSITION); #else input_position_sensor = LOW; #endif // Inclination debounce state machine //----------------------------------- switch (stmDebounceState) { case STM_DEBOUNCE_IDLE_0: if (input_position_sensor == HIGH) { stmDebounceState = STM_DEBOUNCE_DETECT_1; debounce_delay = millis(); } break; case STM_DEBOUNCE_IDLE_1: if (input_position_sensor == LOW) { stmDebounceState = STM_DEBOUNCE_DETECT_0; debounce_delay = millis(); } break; case STM_DEBOUNCE_DETECT_0: millis_temp = millis(); if (input_position_sensor == HIGH) { stmDebounceState = STM_DEBOUNCE_IDLE_1; } else if ((millis_temp >= debounce_delay) && ((millis_temp - debounce_delay) > DEBOUNCE_DELAY)) { stmDebounceState = STM_DEBOUNCE_DEBOUNCE_0; } else if (millis_temp < debounce_delay) { // Overflow protection for uptime of several weeks or more. debounce_delay = 0; } break; case STM_DEBOUNCE_DETECT_1: millis_temp = millis(); if (input_position_sensor == LOW) { stmDebounceState = STM_DEBOUNCE_IDLE_0; } else if ((millis_temp >= debounce_delay) && ((millis_temp - debounce_delay) > DEBOUNCE_DELAY)) { stmDebounceState = STM_DEBOUNCE_DEBOUNCE_1; } else if (millis_temp < debounce_delay) { // Overflow protection for uptime of several weeks or more. debounce_delay = 0; } break; case STM_DEBOUNCE_DEBOUNCE_0: stmDebounceState = STM_DEBOUNCE_IDLE_0; digitalWrite(LED_BUILTIN, LOW); // DEBUG break; case STM_DEBOUNCE_DEBOUNCE_1: stmDebounceState = STM_DEBOUNCE_IDLE_1; digitalWrite(LED_BUILTIN, HIGH); // DEBUG break; default: break; } #ifdef SENSOR_TOUCH_SENSOR1 input_touch_sensor1 = digitalRead(PIN_TOUCH_SENSOR1); #else input_touch_sensor1 = LOW; #endif #ifdef SENSOR_TOUCH_SENSOR2 input_touch_sensor2 = digitalRead(PIN_TOUCH_SENSOR2); #else input_touch_sensor2 = LOW; #endif // Main state machine //------------------- switch (stmState) { //Init is not used, here for future use and coding best practice case STM_INIT: stmState = STM_IDLE; break; case STM_IDLE: if ((stmDebounceState == STM_DEBOUNCE_DEBOUNCE_1) || (input_touch_sensor1 == HIGH) || (input_touch_sensor2 == HIGH) || (accel_detect == true)) { stmState = STM_PLAY; } break; case STM_PLAY: WritePlaySong(cPlaylistIndif_TA[song_playing_current_u8].song_index_u8 + 1U); // Play the current song song_cycles_cnt_u8++; // Increment cycles counter if (song_cycles_cnt_u8 >= cPlaylistIndif_TA[song_playing_current_u8].cycles_number_u8) { // Check cycles counter overflow song_cycles_cnt_u8 = 0; // Reset the cycles counter song_playing_current_u8++; // Increment the playlist counter } if (song_playing_current_u8 >= PLAYLIST_LENGTH) { // Check playlist song counter overflow song_playing_current_u8 = 0; } play_blank_delay = millis(); stmState = STM_BLANK; break; case STM_BLANK: millis_temp = millis(); if ((millis_temp >= play_blank_delay) && ((millis_temp - play_blank_delay) > PLAY_BLANK_DELAY)) { #ifdef MP3_RESET stmState = STM_MP3_RESET; mp3_reset_delay = millis(); digitalWrite(PIN_GROUND_SWITCH, LOW); #else stmState = STM_IDLE; #endif } else if (millis_temp < play_blank_delay) { // Overflow protection for uptime of several weeks or more. play_blank_delay = 0; } break; case STM_MP3_RESET: millis_temp = millis(); if ((millis_temp >= mp3_reset_delay) && ((millis_temp - mp3_reset_delay) > DELAY_MP3_RESET)) { stmState = STM_IDLE; digitalWrite(PIN_GROUND_SWITCH, HIGH); } else if (millis_temp < mp3_reset_delay) { // Overflow protection for uptime of several weeks or more. mp3_reset_delay = 0; } break; default: stmState = STM_INIT; break; } #ifdef DEBUG_UART_ACCELEROMETER Serial.print("Accelerometer: "); Serial.print("X = "); Serial.print(AcX); Serial.print(" | Y = "); Serial.print(AcY); Serial.print(" | Z = "); Serial.println(AcZ); Serial.print("Gyroscope: "); Serial.print("X = "); Serial.print(GyX); Serial.print(" | Y = "); Serial.print(GyY); Serial.print(" | Z = "); Serial.println(GyZ); Serial.print("Temperature: "); Serial.print(Tmp); Serial.println(" "); #endif } /* SerialEvent occurs whenever a new data comes in the hardware serial RX. This routine is run between each time loop() runs, so using delay inside loop can delay response. Multiple bytes of data may be available. */ void serialEvent() { while (Serial.available()) { // get the new byte: char inChar = (char)Serial.read(); // add it to the inputString: inputString += inChar; // if the incoming character is a newline, set a flag so the main loop can // do something about it: if (inChar == '\n') { stringComplete = true; } } } void ReadPlayState (void) { // Send Play State read request Serial.write(170); // 0xAA Serial.write(1); // 0x01 Serial.write(0); // 0x00 Serial.write(171); // 0xAB } void WritePlay (void) { // Send Play request Serial.write(170); // 0xAA Serial.write(2); // 0x02 Serial.write(0); // 0x00 Serial.write(172); // 0xAC } void WritePlaySong (uint16_t index) { uint8_t buffer_u8A[5]; buffer_u8A[0] = 0xAA; buffer_u8A[1] = 0x07; buffer_u8A[2] = 0x02; buffer_u8A[3] = (uint8_t)((index >> 8U) & (uint16_t)0x00FF); buffer_u8A[4] = (uint8_t)(index & (uint16_t)0x00FF); uint8_t crc_u8 = CrcCalculate(buffer_u8A, 5); // Send Play request Serial.write((int)buffer_u8A[0]); // 0xAA Serial.write((int)buffer_u8A[1]); // 0x07 Serial.write((int)buffer_u8A[2]); // 0x02 Serial.write((int)buffer_u8A[3]); // Song number high byte Serial.write((int)buffer_u8A[4]); // Song number low byte Serial.write((int)crc_u8); // CRC } uint8_t CrcCalculate (uint8_t *buff, uint8_t size) { uint16_t ret_u16 = 0; uint8_t cnt_u8 = 0; for (cnt_u8 = 0; cnt_u8 < size; cnt_u8++) { ret_u16 += *(buff + cnt_u8); } return ((uint8_t)(ret_u16 & (uint16_t)0x00FF)); }