/* XV Lidar Controller v1.2.2 Copyright 2014 James LeRoy getSurreal https://github.com/getSurreal/XV_Lidar_Controller http://www.getsurreal.com/products/xv-lidar-controller Modified to add CRC checking - Doug Hilton, WD0UG November, 2015 mailto: six.speed (at) yahoo (dot) com See README for additional information The F() macro in the Serial statements tells the compiler to keep your strings in PROGMEM */ #include // used for ultrasonic PWM motor control #include #include #include "EEPROMAnything.h" #include const int N_ANGLES = 360; // # of angles (0..359) const int SHOW_ALL_ANGLES = N_ANGLES; // value means 'display all angle data, 0..359' struct EEPROM_Config { byte id; char version[6]; int motor_pwm_pin; // pin connected to mosfet for motor speed control double rpm_setpoint; // desired RPM (uses double to be compatible with PID library) double rpm_min; double rpm_max; double pwm_max; // max analog value. probably never needs to change from 1023 double pwm_min; // min analog pulse value to spin the motor int sample_time; // how often to calculate the PID values // PID tuning values double Kp; double Ki; double Kd; boolean motor_enable; // to spin the laser or not. No data when not spinning boolean raw_data; // to retransmit the seiral data to the USB port boolean show_dist; // controlled by ShowDist and HideDist commands boolean show_rpm; // controlled by ShowRPM and HideRPM commands unsigned int show_angle; // controlled by ShowAngle (0 - 359, 360 shows all) } xv_config; const byte EEPROM_ID = 0x05; // used to validate EEPROM initialized double pwm_val = 500; // start with ~50% power double pwm_last; double motor_rpm; unsigned long now; unsigned long motor_check_timer = millis(); unsigned long motor_check_interval = 200; unsigned int rpm_err_thresh = 10; // 2 seconds (10 * 200ms) to shutdown motor with improper RPM and high voltage unsigned int rpm_err = 0; unsigned long curMillis; unsigned long lastMillis = millis(); // Added by DSH const unsigned char COMMAND = 0xFA; // Start of new packet const int INDEX_LO = 0xA0; // lowest index value const int INDEX_HI = 0xF9; // highest index value const int N_DATA_QUADS = 4; // there are 4 groups of data elements const int N_ELEMENTS_PER_QUAD = 4; // viz., 0=distance LSB; 1=distance MSB; 2=sig LSB; 3=sig MSB // Offsets to bytes within 'Packet' const int OFFSET_TO_START = 0; const int OFFSET_TO_INDEX = OFFSET_TO_START + 1; const int OFFSET_TO_SPEED_LSB = OFFSET_TO_INDEX + 1; const int OFFSET_TO_SPEED_MSB = OFFSET_TO_SPEED_LSB + 1; const int OFFSET_TO_4_DATA_READINGS = OFFSET_TO_SPEED_MSB + 1; const int OFFSET_TO_CRC_L = OFFSET_TO_4_DATA_READINGS + (N_DATA_QUADS * N_ELEMENTS_PER_QUAD); const int OFFSET_TO_CRC_M = OFFSET_TO_CRC_L + 1; const int PACKET_LENGTH = OFFSET_TO_CRC_M + 1; // length of a complete packet // Offsets to the (4) elements of each of the (4) data quads const int OFFSET_DATA_DISTANCE_LSB = 0; const int OFFSET_DATA_DISTANCE_MSB = OFFSET_DATA_DISTANCE_LSB + 1; const int OFFSET_DATA_SIGNAL_LSB = OFFSET_DATA_DISTANCE_MSB + 1; const int OFFSET_DATA_SIGNAL_MSB = OFFSET_DATA_SIGNAL_LSB + 1; int Packet[PACKET_LENGTH]; // an input packet int ixPacket = 0; // index into 'Packet' array const int VALID_PACKET = 0; const int INVALID_PACKET = VALID_PACKET + 1; const byte INVALID_DATA_FLAG = (1 << 7); // Mask for byte 1 of each data quad "Invalid data" /* REF: https://github.com/Xevel/NXV11/wiki The bit 7 of byte 1 seems to indicate that the distance could not be calculated. It's interesting to see that when this bit is set, the second byte is always 80, and the values of the first byte seem to be only 02, 03, 21, 25, 35 or 50... When it's 21, then the whole block is 21 80 XX XX, but for all the other values it's the data block is YY 80 00 00 maybe it's a code to say what type of error ? (35 is preponderant, 21 seems to be when the beam is interrupted by the supports of the cover) . */ const byte STRENGTH_WARNING_FLAG = (1 << 6); // Mask for byte 1 of each data quat "Strength Warning" /* The bit 6 of byte 1 is a warning when the reported strength is greatly inferior to what is expected at this distance. This may happen when the material has a low reflectance (black material...), or when the dot does not have the expected size or shape (porous material, transparent fabric, grid, edge of an object...), or maybe when there are parasitic reflections (glass... ). */ const byte BAD_DATA_MASK = (INVALID_DATA_FLAG | STRENGTH_WARNING_FLAG); const byte eState_Find_COMMAND = 0; // 1st state: find 0xFA (COMMAND) in input stream const byte eState_Build_Packet = eState_Find_COMMAND + 1; // 2nd state: build the packet int eState = eState_Find_COMMAND; PID rpmPID(&motor_rpm, &pwm_val, &xv_config.rpm_setpoint, xv_config.Kp, xv_config.Ki, xv_config.Kd, DIRECT); uint8_t inByte = 0; // incoming serial byte //uint16_t data_status = 0; //uint16_t data_4deg_index = 0; //uint16_t data_loop_index = 0; uint8_t motor_rph_high_byte = 0; uint8_t motor_rph_low_byte = 0; //uint8_t data0, data2; uint16_t aryDist[N_DATA_QUADS] = {0,0,0,0}; // thre are (4) distances, one for each data quad // so the maximum distance is 16383 mm (0x3FFF) uint16_t aryQuality[N_DATA_QUADS] = {0,0,0,0}; // same with 'quality' uint16_t motor_rph = 0; uint16_t startingAngle = 0; // the first scan angle (of group of 4, based on 'index'), in degrees (0..359) SerialCommand sCmd; const int ledPin = 11; boolean ledState = LOW; // initialization (before 'loop') void setup() { EEPROM_readAnything(0, xv_config); if( xv_config.id != EEPROM_ID) { // verify EEPROM values have been initialized initEEPROM(); } pinMode(xv_config.motor_pwm_pin, OUTPUT); Serial.begin(115200); // USB serial Serial1.begin(115200); // XV LDS data Timer3.initialize(30); // set PWM frequency to 32.768kHz rpmPID.SetOutputLimits(xv_config.pwm_min,xv_config.pwm_max); rpmPID.SetSampleTime(xv_config.sample_time); rpmPID.SetTunings(xv_config.Kp, xv_config.Ki, xv_config.Kd); rpmPID.SetMode(AUTOMATIC); initSerialCommands(); pinMode(ledPin, OUTPUT); eState = eState_Find_COMMAND; for (ixPacket = 0; ixPacket < PACKET_LENGTH; ixPacket++) // Initialize Packet[ixPacket] = 0; ixPacket = 0; //hideRaw(); // DSH ONLY!!!!!!!!!!!! } // Main loop (forever) void loop() { byte aryInvalidDataFlag[N_DATA_QUADS] = {0,0,0,0}; // non-zero = INVALID_DATA_FLAG or STRENGTH_WARNING_FLAG is set sCmd.readSerial(); // check for incoming serial commands if (Serial1.available() > 0) { // read byte from LIDAR and relay to USB inByte = Serial1.read(); // get incoming byte: if (xv_config.raw_data) Serial.print(inByte, BYTE); // relay // Switch, based on 'eState': // State 1: We're scanning for 0xFA (COMMAND) in the input stream // State 2: Build a complete data packet if (eState == eState_Find_COMMAND) { // flush input until we get COMMAND byte if(inByte == COMMAND) { eState++; // switch to 'build a packet' state Packet[ixPacket++] = inByte; // store 1st byte of data into 'Packet' } } else { // eState == eState_Build_Packet Packet[ixPacket++] = inByte; // keep storing input into 'Packet' if (ixPacket == PACKET_LENGTH) { // we've got all the input bytes, so we're done building this packet if (eValidatePacket() == VALID_PACKET) { // Check packet CRC startingAngle = processIndex(); // get the starting angle of this group (of 4), e.g., 0, 4, 8, 12, ... processSpeed(); // process the speed // process each of the (4) sets of data in the packet for (int ix = 0; ix < N_DATA_QUADS; ix++) // process the distance aryInvalidDataFlag[ix] = processDistance(ix); for (int ix = 0; ix < N_DATA_QUADS; ix++) { // process the signal strength (quality) aryQuality[ix] = 0; if (aryInvalidDataFlag[ix] == 0) processSignalStrength(ix); } if (xv_config.show_dist) { // the 'ShowDistance' command is active if (xv_config.show_angle == SHOW_ALL_ANGLES // Are we showing all angles or just 1 angle? || ((xv_config.show_angle >= startingAngle) && (xv_config.show_angle < startingAngle + N_DATA_QUADS))) { for (int ix = 0; ix < N_DATA_QUADS; ix++) { // process each of the (4) angles if ((xv_config.show_angle == SHOW_ALL_ANGLES) || (xv_config.show_angle == startingAngle + ix)) { if (aryInvalidDataFlag[ix] == 0) { // make sure that the 'Invalid Data' flag is clear Serial.print(startingAngle + ix); Serial.print(F(": ")); Serial.print(int(aryDist[ix])); Serial.print(F(" (")); Serial.print(aryQuality[ix]); Serial.println(F(")")); } else { /* // UNCOMMENT BELOW TO PRINT 'INVALID' and 'SIGNAL' ERROR MESSAGES IN REAL-TIME Serial.print(startingAngle + ix); Serial.print(F(": ")); for (int ix = 0; ix < PACKET_LENGTH; ix++) { if (Packet[ix] < 0x10) Serial.print("0"); Serial.print(Packet[ix], HEX); Serial.print(" "); } for (int ix = 0; ix < N_DATA_QUADS; ix++) { if (aryInvalidDataFlag[ix] & INVALID_DATA_FLAG) Serial.print("{I}"); else Serial.print("{_}"); } for (int ix = 0; ix < N_DATA_QUADS; ix++) { if (aryInvalidDataFlag[ix] & STRENGTH_WARNING_FLAG) Serial.print("{S}"); else Serial.print("{_}"); } Serial.println(""); */ // UNCOMMENT ABOVE } // else } // if ((xv_config.show_angle == SHOW_ALL_ANGLES) ... } // or (int ix = 0; ix < N_DATA_QUADS; ix++) } // if (xv_config.show_angle == SHOW_ALL_ANGLES ... } // if (xv_config.show_dist) } // if (eValidatePacket() == 0 else { //Serial.println("Skipping packet with bad CRC"); } // initialize a bunch of stuff before we switch back to State 1 for (int ix = 0; ix < N_DATA_QUADS; ix++) { aryDist[ix] = 0; aryQuality[ix] = 0; aryInvalidDataFlag[ix] = 0; } for (ixPacket = 0; ixPacket < PACKET_LENGTH; ixPacket++) // clear out this packet Packet[ixPacket] = 0; ixPacket = 0; eState = eState_Find_COMMAND; // This packet is done -- look for next COMMAND byte } // if (ixPacket == PACKET_LENGTH) } // if (eState == eState_Find_COMMAND) } // if (Serial1.available() > 0) if (xv_config.motor_enable) { rpmPID.Compute(); if (pwm_val != pwm_last) { Timer3.pwm(xv_config.motor_pwm_pin, pwm_val); // replacement for analogWrite() pwm_last = pwm_val; } motorCheck(); } // if (xv_config.motor_enable) } // loop /* * processIndex - Process the packet element 'index' * index is the index byte in the 90 packets, going from A0 (packet 0, readings 0 to 3) to F9 * (packet 89, readings 356 to 359). * Enter with: N/A * Uses: Packet * ledState gets toggled if angle = 0 * ledPin = which pin the LED is connected to * ledState = LED on or off * xv_config.show_dist = true if we're supposed to show distance * curMillis = milliseconds, now * lastMillis = milliseconds, last time through this subroutine * Calls: digitalWrite() - used to toggle LED pin * Serial.print * Returns: The first angle (of 4) in the current 'index' group */ uint16_t processIndex() { uint16_t angle = 0; uint16_t data_4deg_index = Packet[OFFSET_TO_INDEX] - INDEX_LO; angle = data_4deg_index * N_DATA_QUADS; // 1st angle in the set of 4 if (angle == 0) { if (ledState) { ledState = LOW; } else { ledState = HIGH; } digitalWrite(ledPin, ledState); if (xv_config.show_dist) { curMillis = millis(); if(xv_config.show_angle == SHOW_ALL_ANGLES) { /* Serial.print(F("Time Interval: ")); Serial.println(curMillis - lastMillis); */ } lastMillis = curMillis; } } // if (angle == 0) return angle; } /* * processSpeed- Process the packet element 'speed' * speed is two-bytes of information, little-endian. It represents the speed, in 64th of RPM (aka value * in RPM represented in fixed point, with 6 bits used for the decimal part). * Enter with: N/A * Uses: Packet * angle = if 0 then enable display of RPM and PWM * xv_config.show_rpm = true if we're supposed to display RPM and PWM * Calls: Serial.print */ void processSpeed() { motor_rph_low_byte = Packet[OFFSET_TO_SPEED_LSB]; motor_rph_high_byte = Packet[OFFSET_TO_SPEED_MSB]; motor_rph = (motor_rph_high_byte << 8) | motor_rph_low_byte; motor_rpm = float( (motor_rph_high_byte << 8) | motor_rph_low_byte ) / 64.0; if (xv_config.show_rpm and startingAngle == 0) { Serial.print(F("RPM: ")); Serial.print(motor_rpm); Serial.print(F(" PWM: ")); Serial.println(pwm_val); } } /* * Data 0 to Data 3 are the 4 readings. Each one is 4 bytes long, and organized as follows : * byte 0 : * byte 1 : <"invalid data" flag> <"strength warning" flag> * byte 2 : * byte 3 : */ /* * processDistance- Process the packet element 'distance' * Enter with: iQuad = which one of the (4) readings to process, value = 0..3 * Uses: Packet * dist[] = sets distance to object in binary: ISbb bbbb bbbb bbbb * so maximum distance is 0x3FFF (16383 decimal) millimeters (mm) * Calls: N/A * Exits with: 0 = okay * Error: 1 << 7 = INVALID_DATA_FLAG is set * 1 << 6 = STRENGTH_WARNING_FLAG is set */ byte processDistance(int iQuad) { uint8_t dataL, dataM; aryDist[iQuad] = 0; // initialize int iOffset = OFFSET_TO_4_DATA_READINGS + (iQuad * N_DATA_QUADS) + OFFSET_DATA_DISTANCE_LSB; // byte 0 : (LSB) // byte 1 : <"invalid data" flag> <"strength warning" flag> (MSB) dataM = Packet[iOffset + 1]; // get MSB of distance data + flags if (dataM & BAD_DATA_MASK) // if either INVALID_DATA_FLAG or STRENGTH_WARNING_FLAG is set... return dataM & BAD_DATA_MASK; // ...then return non-zero dataL = Packet[iOffset]; // LSB of distance data aryDist[iQuad] = dataL | ((dataM & 0x3F) << 8); return 0; // okay } /* * processSignalStrength- Process the packet element 'signal strength' * Enter with: iQuad = which one of the (4) readings to process, value = 0..3 * Uses: Packet * quality[] = signal quality * Calls: N/A */ void processSignalStrength(int iQuad) { uint8_t dataL, dataM; aryQuality[iQuad] = 0; // initialize int iOffset = OFFSET_TO_4_DATA_READINGS + (iQuad * N_DATA_QUADS) + OFFSET_DATA_SIGNAL_LSB; dataL = Packet[iOffset]; // signal strength LSB dataM = Packet[iOffset + 1]; aryQuality[iQuad] = dataL | (dataM << 8); } /* * eValidatePacket - Validate 'Packet' * Enter with: 'Packet' is ready to check * Uses: CalcCRC * Exits with: 0 = Packet is okay * Error: non-zero = Packet is no good */ byte eValidatePacket() { unsigned long chk32; unsigned long checksum; const int bytesToCheck = PACKET_LENGTH - 2; const int CalcCRC_Len = bytesToCheck / 2; unsigned int CalcCRC[CalcCRC_Len]; byte b1a, b1b, b2a, b2b; int ix; for (int ix = 0; ix < CalcCRC_Len; ix++) // initialize 'CalcCRC' array CalcCRC[ix] = 0; // Perform checksum validity test for (ix = 0; ix < bytesToCheck; ix += 2) // build 'CalcCRC' array CalcCRC[ix / 2] = Packet[ix] + ((Packet[ix + 1]) << 8); chk32 = 0; for (ix = 0; ix < CalcCRC_Len; ix++) chk32 = (chk32 << 1) + CalcCRC[ix]; checksum = (chk32 & 0x7FFF) + (chk32 >> 15); checksum &= 0x7FFF; b1a = checksum & 0xFF; b1b = Packet[OFFSET_TO_CRC_L]; b2a = checksum >> 8; b2b = Packet[OFFSET_TO_CRC_M]; if ((b1a == b1b) && (b2a == b2b)) return VALID_PACKET; // okay else return INVALID_PACKET; // non-zero = bad CRC } /* * initEEPROM */ void initEEPROM() { xv_config.id = 0x05; strcpy(xv_config.version, "1.2.2"); xv_config.motor_pwm_pin = 9; // pin connected N-Channel Mosfet xv_config.rpm_setpoint = 300; // desired RPM xv_config.rpm_min = 200; xv_config.rpm_max = 300; xv_config.pwm_min = 100; xv_config.pwm_max = 1023; xv_config.sample_time = 20; xv_config.Kp = 2.0; xv_config.Ki = 1.0; xv_config.Kd = 0.0; xv_config.motor_enable = true; xv_config.raw_data = true; xv_config.show_dist = false; xv_config.show_rpm = false; xv_config.show_angle = SHOW_ALL_ANGLES; EEPROM_writeAnything(0, xv_config); } /* * initSerialCommands */ void initSerialCommands() { sCmd.addCommand("help", help); sCmd.addCommand("Help", help); sCmd.addCommand("ShowConfig", showConfig); sCmd.addCommand("SaveConfig", saveConfig); sCmd.addCommand("ResetConfig",initEEPROM); sCmd.addCommand("SetRPM", setRPM); sCmd.addCommand("SetKp", setKp); sCmd.addCommand("SetKi", setKi); sCmd.addCommand("SetKd", setKd); sCmd.addCommand("SetSampleTime", setSampleTime); sCmd.addCommand("ShowRPM", showRPM); sCmd.addCommand("HideRPM", hideRPM); sCmd.addCommand("ShowDist", showDist); sCmd.addCommand("HideDist", hideDist); sCmd.addCommand("ShowAngle", showAngle); sCmd.addCommand("HideAngle", hideDist); sCmd.addCommand("MotorOff", motorOff); sCmd.addCommand("MotorOn", motorOn); sCmd.addCommand("HideRaw", hideRaw); sCmd.addCommand("ShowRaw", showRaw); } /* * showRPM */ void showRPM() { xv_config.show_rpm = true; if (xv_config.raw_data == true) { hideRaw(); } Serial.println(F(" ")); Serial.print(F("Showing RPM data")); Serial.println(F(" ")); } /* * hideRPM */ void hideRPM() { xv_config.show_rpm = false; Serial.println(F(" ")); Serial.print(F("Hiding RPM data")); Serial.println(F(" ")); } void showDist() { xv_config.show_dist = true; if (xv_config.raw_data == true) { hideRaw(); } xv_config.show_angle = SHOW_ALL_ANGLES; Serial.println(F(" ")); Serial.print(F("Showing Distance data : (quality)}")); Serial.println(F(" ")); } void hideDist() { xv_config.show_dist = false; xv_config.show_angle = SHOW_ALL_ANGLES; // set default back to 'show all angles' Serial.println(F(" ")); Serial.print(F("Hiding Distance data")); Serial.println(F(" ")); } void showAngle() { showDist(); double sVal = 0.0; char *arg; boolean syntax_error = false; arg = sCmd.next(); if (arg != NULL) { sVal = atoi(arg); // Converts a char string to a int if (sVal < 0 or sVal > SHOW_ALL_ANGLES) { syntax_error = true; } } else { syntax_error = true; } arg = sCmd.next(); if (arg != NULL) { syntax_error = true; } if (syntax_error) { Serial.println(F(" ")); Serial.print(F("Incorrect syntax. Example: ShowAngle 0 (0 - 359 or 360 for all)")); Serial.println(F(" ")); } else { xv_config.show_angle = sVal; Serial.println(F(" ")); if (xv_config.show_angle == SHOW_ALL_ANGLES) Serial.print(F("Showing All Angles")); else { Serial.print(F("Showing Only Angle: ")); Serial.println(sVal); } Serial.println(F(" ")); } // if (syntax_error) } void motorOff() { xv_config.motor_enable = false; Timer3.pwm(xv_config.motor_pwm_pin, 0); Serial.println(F(" ")); Serial.print(F("Motor off")); Serial.println(F(" ")); } void motorOn() { xv_config.motor_enable = true; Timer3.pwm(xv_config.motor_pwm_pin, pwm_val); rpm_err = 0; // reset rpm error Serial.println(F(" ")); Serial.print(F("Motor on")); Serial.println(F(" ")); } void motorCheck() { // Make sure the motor RPMs are good else shut it down now = millis(); if (now - motor_check_timer > motor_check_interval){ if ((motor_rpm < xv_config.rpm_min or motor_rpm > xv_config.rpm_max) and pwm_val > 1000) { rpm_err++; } else { rpm_err = 0; } if (rpm_err > rpm_err_thresh) { motorOff(); ledState = LOW; digitalWrite(ledPin, ledState); } motor_check_timer = millis(); } } void hideRaw() { xv_config.raw_data = false; Serial.println(F(" ")); Serial.print(F("Raw lidar data disabled")); Serial.println(F(" ")); } void showRaw() { xv_config.raw_data = true; hideDist(); hideRPM(); Serial.println(F(" ")); Serial.print(F("Lidar data enabled")); Serial.println(F(" ")); } void setRPM() { double sVal = 0.0; char *arg; boolean syntax_error = false; arg = sCmd.next(); if (arg != NULL) { sVal = atof(arg); // Converts a char string to a float if (sVal < xv_config.rpm_min) { sVal = xv_config.rpm_min; Serial.println(F(" ")); Serial.print(F("RPM too low. Setting to minimum ")); Serial.print(xv_config.rpm_min); Serial.println(F(" ")); } if (sVal > xv_config.rpm_max) { sVal = xv_config.rpm_max; Serial.println(F(" ")); Serial.print(F("RPM too high. Setting to maximum ")); Serial.print(xv_config.rpm_max); Serial.println(F(" ")); } } else { syntax_error = true; } arg = sCmd.next(); if (arg != NULL) { syntax_error = true; } if (syntax_error) { Serial.println(F(" ")); Serial.print(F("Incorrect syntax. Example: SetRPM 300")); Serial.println(F(" ")); } else { Serial.print(F("Old RPM setpoint:")); Serial.println(xv_config.rpm_setpoint); xv_config.rpm_setpoint = sVal; //Serial.println(F(" ")); Serial.print(F("New RPM setpoint: ")); Serial.println(sVal); Serial.println(F(" ")); } } void setKp() { double sVal = 0.0; char *arg; boolean syntax_error = false; arg = sCmd.next(); if (arg != NULL) { sVal = atof(arg); // Converts a char string to a float } else { syntax_error = true; } arg = sCmd.next(); if (arg != NULL) { syntax_error = true; } if (syntax_error) { Serial.println(F(" ")); Serial.print(F("Incorrect syntax. Example: SetKp 1.0")); Serial.println(F(" ")); } else { Serial.println(F(" ")); Serial.print(F("Setting Kp to: ")); Serial.println(sVal); Serial.println(F(" ")); xv_config.Kp = sVal; rpmPID.SetTunings(xv_config.Kp, xv_config.Ki, xv_config.Kd); } } void setKi() { double sVal = 0.0; char *arg; boolean syntax_error = false; arg = sCmd.next(); if (arg != NULL) { sVal = atof(arg); // Converts a char string to a float } else { syntax_error = true; } arg = sCmd.next(); if (arg != NULL) { syntax_error = true; } if (syntax_error) { Serial.println(F(" ")); Serial.print(F("Incorrect syntax. Example: SetKi 0.5")); Serial.println(F(" ")); } else { Serial.println(F(" ")); Serial.print(F("Setting Ki to: ")); Serial.println(sVal); Serial.println(F(" ")); xv_config.Ki = sVal; rpmPID.SetTunings(xv_config.Kp, xv_config.Ki, xv_config.Kd); } } void setKd() { double sVal = 0.0; char *arg; boolean syntax_error = false; arg = sCmd.next(); if (arg != NULL) { sVal = atof(arg); // Converts a char string to a float } else { syntax_error = true; } arg = sCmd.next(); if (arg != NULL) { syntax_error = true; } if (syntax_error) { Serial.println(F(" ")); Serial.print(F("Incorrect syntax. Example: SetKd 0.001")); Serial.println(F(" ")); } else { Serial.println(F(" ")); Serial.print(F("Setting Kd to: ")); Serial.println(sVal); Serial.println(F(" ")); xv_config.Kd = sVal; rpmPID.SetTunings(xv_config.Kp, xv_config.Ki, xv_config.Kd); } } void setSampleTime() { double sVal = 0.0; char *arg; boolean syntax_error = false; arg = sCmd.next(); if (arg != NULL) { sVal = atoi(arg); // Converts a char string to an integer } else { syntax_error = true; } arg = sCmd.next(); if (arg != NULL) { syntax_error = true; } if (syntax_error) { Serial.println(F(" ")); Serial.print(F("Incorrect syntax. Example: SetSampleTime 20")); Serial.println(F(" ")); } else { Serial.println(F(" ")); Serial.print(F("Setting Sample time to: ")); Serial.println(sVal); Serial.println(F(" ")); xv_config.sample_time = sVal; rpmPID.SetSampleTime(xv_config.sample_time); } } void help() { if (xv_config.raw_data == true) { hideRaw(); } Serial.println(F(" ")); Serial.println(F(" ")); Serial.print(F("XV Lidar Controller Firmware Version ")); Serial.println(xv_config.version); Serial.print(F("GetSurreal.com *")); Serial.println(F(" ")); Serial.println(F(" ")); Serial.println(F("List of available commands (case sensitive)")); Serial.println(F(" ShowConfig - Show the running configuration")); Serial.println(F(" SaveConfig - Save the running configuration to EEPROM")); Serial.println(F(" ResetConfig - Restore the original configuration")); Serial.println(F(" SetRPM - Set the desired rotation speed (min: 200, max: 300)")); Serial.println(F(" SetKp - Set the proportional gain")); Serial.println(F(" SetKi - Set the integral gain")); Serial.println(F(" SetKd - Set the derivative gain")); Serial.println(F(" SetSampleTime - Set the frequency the PID is calculated (ms)")); Serial.println(F(" ShowRPM - Show the rotation speed")); Serial.println(F(" HideRPM - Hide the rotation speed")); Serial.println(F(" ShowDist - Show the distance data")); Serial.println(F(" HideDist - Hide the distance data")); Serial.println(F(" ShowAngle - Show distance data for a specific angle (0 - 359 or 360 for all)")); Serial.println(F(" HideAngle - Hide distance data for all angles")); Serial.println(F(" MotorOff - Stop spinning the lidar")); Serial.println(F(" MotorOn - Enable spinning of the lidar")); Serial.println(F(" HideRaw - Stop outputting the raw data from the lidar")); Serial.println(F(" ShowRaw - Enable the output of the raw lidar data")); Serial.println(F(" ")); Serial.println(F(" ")); } void showConfig() { if (xv_config.raw_data == true) { hideRaw(); } Serial.println(F(" ")); Serial.println(F(" ")); Serial.print(F("XV Lidar Controller Firmware Version ")); Serial.println(xv_config.version); Serial.print(F("GetSurreal.com")); Serial.println(F(" ")); Serial.println(F(" ")); Serial.print(F("PWM pin: ")); Serial.println(xv_config.motor_pwm_pin); Serial.print(F("Target RPM: ")); Serial.println(xv_config.rpm_setpoint); Serial.print(F("Max PWM: ")); Serial.println(xv_config.pwm_max); Serial.print(F("Min PWM: ")); Serial.println(xv_config.pwm_min); Serial.print(F("PID Kp: ")); Serial.println(xv_config.Kp); Serial.print(F("PID Ki: ")); Serial.println(xv_config.Ki); Serial.print(F("PID Kd: ")); Serial.println(xv_config.Kd); Serial.print(F("SampleTime: ")); Serial.println(xv_config.sample_time); Serial.print(F("Motor Enable: ")); Serial.println(xv_config.motor_enable); Serial.print(F("Show Raw Data: ")); Serial.println(xv_config.raw_data); Serial.print(F("Show Dist Data: ")); Serial.println(xv_config.show_dist); Serial.print(F("Show RPM Data: ")); Serial.println(xv_config.show_rpm); Serial.print(F("Show Angle: ")); Serial.println(xv_config.show_angle); Serial.println(F(" ")); Serial.println(F(" ")); } void saveConfig() { EEPROM_writeAnything(0, xv_config); Serial.print(F("Config Saved.")); }