#!/usr/bin/env python # - * - coding: utf-8 - * - """ Created on Sun May 12 20:08:52 2019 @author: MAC """ import numpy as np from numpy import linalg as LA # Constants T_SIDE = 86164.10 # sidereal day (s) MU = 3.9860e14 # earth standard gravitational parameter (=G * M_earth) (m3.s-2) R_T = 6378e3 # earth radius (m) G0 = 9.81 # standard gravity (m.s-2) R = 287 # specific gas constant (J.Kg-1.K-1) def initial_vel(latitude,retrograde=False): """ Initial velocity (m.s-1) depending on the launch point latitude (°) :param latitude: the launch point latitude in ° :return: the initial velocity in m.s-1 """ initial_velocity = (2 * np.pi / T_SIDE) * R_T * np.cos(np.deg2rad(np.abs(latitude))) if retrograde: return -initial_velocity else: return initial_velocity def final_target_vel(h, a): """ .. math:: \\sqrt {2 \\cdot MU \\cdot (\\frac {1}{R_T + h} - \\frac {1}{2 * a})} :param h: injection altitude (m) :type h: float :param a: orbit semi major axis (m) :type a: float :return: orbit absolute injection velocity (m.s-1) :rtype: float """ v_square = 2 * MU * ((1 / (R_T + h)) - (1 / (2 * a))) print('{} > {}'.format((R_T + h), (2 * a))) assert v_square >= 0, 'error: square root only on positiv values' return np.sqrt(v_square) def staging_optim(isp1,isp2,eps1,eps2,Vc,Mp): """Optimise mass loading in the case of two stage rocket .. math:: structural_coefficient = \\frac {strcture_mass} {structure_mass + propellant_mass} :param isp1: specific impulse of the first stage (s) :type isp1: float :param isp2: specific impulse of the second stage (s) :type isp2: float :param eps1: structural coefficient of the first stage :type eps1: float :param eps2: structural coefficient of the second stage :type eps2: float :param Vc: target critical velocity (m.s-1) :type Vc: float :param Mp: payload mass (Kg) :type Mp: float :return: mass of the first and second stage (Kg) :rtype: float """ omega_tab=np.linspace(0.001,0.9,100) # array of omega to test qp_tab=[] for omega in omega_tab: q2 = omega + eps1 * (1 - omega) q2 = np.power(q2,isp1 / isp2) * np.exp(Vc / (G0 * isp2)) q2 = 1 / q2 q2 = 1 - q2 q2 *= omega / (1 - eps2) qp = omega - q2 qp_tab.append(qp) qp=max(qp_tab) omega=omega_tab[qp_tab.index(qp)] q2=omega - qp q1=1 - q2 - qp M1=(Mp / qp) * q1 M2=(Mp / qp) * q2 return M1, M2 def standard_atmosphere(altitude): """ Compute atmospheric properties according to the International \ Standard Atmosphere (ISA) model :param altitude: altitude in meter :type altitude: float :return: T, P, rho : temperature (K), pressure (Pa), density (Kg.m-3) :rtype: float, float, float """ # ISA model assert altitude < 84852 , str(altitude) + ' is higher than max altitude of the ISA model' h0_tab = np.array([0, 11e3, 20e3, 32e3, 47e3, 51e3, 71e3, 84852]) # base altitude (m) a_tab = np.array([-6.5e-3, 0, 1e-3, 2.8e-3, 0, -2.8e-3, -2.0e-3]) # lapse rate (K.m-1) # the base properties of each range are tabulated to reduce computational cost T0_tab = np.array([288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65]) # base temperature (K) P0_tab = np.array([101325, 22632, 5474.9, 868.02, 110.91, 66.939, 3.9564]) # base pressure (Pa) index = 0 while altitude > h0_tab[index + 1]: index += 1 a = a_tab[index] T0 = T0_tab[index] P0 = P0_tab[index] T = T0 + a * (altitude - h0_tab[index]) # Toussaint equation if T == T0 : # isohermal region P = P0 * np.exp(-G0 * (altitude - h0_tab[index]) / (R * T)) else : # gradient region P = P0 * np.power(T/T0, -G0/(a*R)) rho = P / (R * T) return T,P,rho def laval_nozzle(Pt,Tt,Pamb,Ath,Ae,gamma,R,tolerance=1e-5): """Compute the thrust assuming a started nozzle .. math:: Thrust = massFlowRate \cdot exitVelocity + (exitPressure - ambiantPressure) \cdot exitArea :param Pt: total pressure in the combustion chambre (Pa) :type Pt: [type] :param Tt: total temperature in the combustion chambre (K) :type Tt: [type] :param Pamb: ambient pressure (Pa) :type Pamb: [type] :param Ath: throat section area (m2) :type Ath: [type] :param Ae: exit section area (m2) :type Ae: [type] :param gamma: ratio of specific heats (adimentional) :type gamma: [type] :param R: specific gas constant (J.Kg-1.K-1) :type R: [type] :param tolerance: [description], defaults to 1e-5 :type tolerance: [type], optional :return: Thrust (N), Specific impulse (s) :rtype: [type] """ assert gamma > 1, 'gamma must be > 1' A_ratio = lambda M,gamma: (1 / M) * np.power((2 / (gamma + 1)) * (1 + ((gamma - 1) / 2) * M * M), (gamma + 1) / (2 * gamma - 2)) # compute the nozzle exit section area corresponding to the adapted regime Madapted = np.sqrt((2 / (gamma - 1)) * (np.power(Pamb / Pt,(1 - gamma) / gamma) - 1)) Aadapted = Ath * A_ratio(Madapted,gamma) if Aadapted > Ae: # the nozzle is under-expanded # compute the exit Mach number iteratively using dichotomy algorithm A_ratio_target = Ae / Ath Me_upper = Madapted Me_lower = 1 Me = (Me_upper + Me_lower) / 2 error = A_ratio_target - A_ratio(Me,gamma) while np.abs(error) > tolerance: if error > 0: Me_lower = Me else: Me_upper = Me Me = (Me_upper + Me_lower) / 2 error = A_ratio_target - A_ratio(Me,gamma) Te = Tt / (1 + ((gamma - 1) / 2) * Me * Me) # exit static temperature Pe = Pt * np.power(Tt / Te,gamma / (1 - gamma)) # exit static pressure elif Aadapted < Ae: # the nozzle is over-expanded Mshock = 1 step = 1 A_ratio_target = Ae / Ath Me_upper = 1 Me_lower = 0 Me = (Me_upper + Me_lower) / 2 error = A_ratio_target - A_ratio(Me,gamma) while np.abs(error) > tolerance: if error < 0: Me_lower = Me else: Me_upper = Me Me = (Me_upper + Me_lower) / 2 error = A_ratio_target - A_ratio(Me,gamma) Te = Tt / (1 + ((gamma - 1) / 2) * Me * Me) Pe = Pt * np.power(Tt / Te,gamma / (1 - gamma)) while (Pe - Pamb) * 1e-5 > tolerance: Mshock_old = Mshock Mshock += step Pe_old = Pe Pt_ratio = np.power(((gamma + 1) * Mshock * Mshock) / ((gamma - 1) * Mshock * Mshock + 2),gamma / (gamma - 1)) * np.power((gamma + 1) / (2 * gamma * Mshock * Mshock - gamma + 1),1 / (gamma - 1)) Pi = Pt * Pt_ratio Ai = Ath / Pt_ratio A_ratio_target = Ae / Ai Me_upper = 1 Me_lower = 0 Me = (Me_upper + Me_lower) / 2 error = A_ratio_target - A_ratio(Me,gamma) while np.abs(error) > tolerance: if error < 0: Me_lower = Me else: Me_upper = Me Me = (Me_upper + Me_lower) / 2 error = A_ratio_target - A_ratio(Me,gamma) Te = Tt / (1 + ((gamma - 1) / 2) * Me * Me) Pe = Pi * np.power(Tt / Te,gamma / (1 - gamma)) if (Pe > Pamb) and (A_ratio(Mshock,gamma) > Ae / Ath): # the normal shock is outside the divergent and all the flow inside is supersonic A_ratio_target = Ae / Ath Me_upper = Mshock Me_lower = 1 Me = (Me_upper + Me_lower) / 2 error = A_ratio_target - A_ratio(Me,gamma) while np.abs(error) > tolerance: if error > 0: Me_lower = Me else: Me_upper = Me Me = (Me_upper + Me_lower) / 2 error = A_ratio_target - A_ratio(Me,gamma) Te = Tt / (1 + ((gamma - 1) / 2) * Me * Me) # exit static temperature Pe = Pt * np.power(Tt / Te,gamma / (1 - gamma)) # exit static pressure break if Pe < Pamb: Pe = Pe_old Mshock = Mshock_old step /= 2 else: # the nozzle is adapted Me = Madapted Te = Tt / (1 + ((gamma - 1) / 2) * Me * Me) # exit static temperature Pe = Pamb Ve = Me * np.sqrt(gamma * R * Te) # exit velocity # maximum mass flow rate in the case of a started nozzle Q = np.power(2 / (gamma + 1),(gamma + 1) / (2 * (gamma - 1))) * np.sqrt(gamma / (Tt * R)) * Pt * Ath Thrust = Q * Ve + (Pe - Pamb) * Ae isp = Thrust / (Q * G0) return Thrust,isp def adiabatic_flame(mech,T,P,X): """Compute adiabatic flame temperature :param mech: chemical mechanism in cti format :type mech: [type] :param T: initial temperature (K) :type T: [type] :param P: pressure (Pa) :type P: [type] :param X: initial chemical composition :type X: [type] """ # work in progress #%% Trajectory tools def solve_traj(): """ """ # ....... #%% Astrodynamics tools def state_to_orbital_elem(r,v): """ Convert state vector to orbital elements inputs: r : coordinate vector (m) v : velocity vector (m.s-1) output: {'a','e','i','capital_omega','small_omega','nu'} where: a : semi_major axis (m) e : eccentricity (adimentional) i : inclination (deg) capital_omega : argument of the ascending node (deg) small_omega : argument of the perigee (deg) nu : true anomaly (deg) NB: - An internal quantity (small) is considered for the case of undefined classical orbital elements. When an element is undefined it is set to zero and other(s) following it are measured according to this convention - The function stops when r and v are aligned - This function is widely inspired by the Matlab function written by Prof. Josep Masdemart from UPC """ orbel={'a':0,'e':0,'i':0,'capital_omega':0,'small_omega':0,'nu':0} small = 1e-10 h = np.cross(r,v) # angular momentum rm = LA.norm(r) # module of the coordinate vector vm = LA.norm(v) # module of the velocity vector hm = LA.norm(h) # module of the angular momentum vector if hm < small: print('rectilinar or collision trajectory') return n = np.array([-h[1],h[0],0]) nm = LA.norm(n) if nm < small: n = np.array([1,0,0]) nm = 0 else: n = n / nm nm = 1 dotrv = np.dot(r,v) e = ((vm * vm - MU / rm) * r - dotrv * v) / MU em = LA.norm(e) if em < small: e = n em = 0 else: e = e / em orbel['e'] = em orbel['a'] = (hm * hm / MU) / (1 - em * em) aux = h[2] / hm if np.abs(aux) > 1: aux = np.sign(aux) # all the angles are first computed in rad orbel['i'] = np.arccos(aux) if nm > small: aux = n[0] if np.abs(aux) > 1: aux = np.sign(aux) orbel['capital_omega'] = np.arccos(aux) if n[1] < 0: orbel['capital_omega'] = 2 * np.pi - orbel['capital_omega'] if em > small: aux = np.dot(e,n) if np.abs(aux) > 1: aux = np.sign(aux) orbel['small_omega'] = np.arccos(aux) if e[2] < 0: orbel['small_omega'] = 2 * np.pi - orbel['small_omega'] aux = np.dot(e,r) / rm if np.abs(aux) > 1: aux = np.sign(aux) orbel['nu'] = np.arccos(aux) if em > small: if dotrv < 0: orbel['nu'] = 2 * np.pi - orbel['nu'] else: ha = np.cross(e,r) if np.dot(h,ha) < 0: orbel['nu'] = 2 * np.pi - orbel['nu'] # convert the angles to deg orbel['i'] = np.rad2deg(orbel['i']) orbel['capital_omega'] = np.rad2deg(orbel['capital_omega']) orbel['small_omega'] = np.rad2deg(orbel['small_omega']) orbel['nu'] = np.rad2deg(orbel['nu']) return orbel def propagate_orbit(): """ """ #%% Thermodynamic cycles # the following functions provide the pressure, the mixuture composition # and the initial temperature in the combustion chambre and properties of some # components of the cycle. def pressure_fed(): """ """ def electric_turbo(): """ """ def open_expander(): """ """ def closed_expander(): """ """ def dual_expander(): """ """ def tap_off(): """ """ def gas_generator(): """ """ def ox_rich_staged_combust(): """ """ def full_flow_staged_combust(): """ """ if __name__ == "__main__": pass