Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
* Copyright (c) 2015 Tricoire Sebastien 3dsman@free.fr
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
*/
#include "OE_path.h"
#include <iostream>
#include <math.h>
#ifndef M_PI
#define M_PI 3.14...
#endif
OE_path::OE_path()
{
//OE_path::OE_svg_base();
opacity = 0; // Opacity of the curve.
strokeWidth = 0; // Stroke width (scaled).
strokeLineJoin = 0; // Stroke join type.
strokeLineCap = 0; // Stroke cap type.
curves = 0;
//next = 0;
}
OE_path::~OE_path()
{
OE_curve *curve;
while (curves != 0) {
curve = curves->getNext();
delete(curves);
curves = curve;
}
}
float OE_path::sqr(float x) { return x*x; }
float OE_path::vmag(float x, float y) { return sqrtf(x*x + y*y); }
float OE_path::vecrat(float ux, float uy, float vx, float vy)
{
return (ux*vx + uy*vy) / (vmag(ux,uy) * vmag(vx,vy));
}
float OE_path::vecang(float ux, float uy, float vx, float vy)
{
float r = vecrat(ux,uy, vx,vy);
if (r < -1.0f) r = -1.0f;
if (r > 1.0f) r = 1.0f;
return ((ux*vy < uy*vx) ? -1.0f : 1.0f) * acosf(r);
}
void OE_path::xformPoint(float* dx, float* dy, float x, float y, float* t)
{
*dx = x*t[0] + y*t[2] + t[4];
*dy = x*t[1] + y*t[3] + t[5];
}
void OE_path::xformVec(float* dx, float* dy, float x, float y, float* t)
{
*dx = x*t[0] + y*t[2];
*dy = x*t[1] + y*t[3];
}
int OE_path::isspace(char c)
{
return strchr(" \t\n\v\f\r", c) != 0;
}
int OE_path::isdigit(char c)
{
return strchr("0123456789", c) != 0;
}
int OE_path::isnum(char c)
{
return strchr("0123456789+-.eE", c) != 0;
}
const char* OE_path::parseNumber(const char* s, char* it, const int size)
{
const int last = size-1;
int i = 0;
// sign
if (*s == '-' || *s == '+') {
if (i < last) it[i++] = *s;
s++;
}
// integer part
while (*s && isdigit(*s)) {
if (i < last) it[i++] = *s;
s++;
}
if (*s == '.') {
// decimal point
if (i < last) it[i++] = *s;
s++;
// fraction part
while (*s && isdigit(*s)) {
if (i < last) it[i++] = *s;
s++;
}
}
// exponent
if (*s == 'e' || *s == 'E') {
if (i < last) it[i++] = *s;
s++;
if (*s == '-' || *s == '+') {
if (i < last) it[i++] = *s;
s++;
}
while (*s && isdigit(*s)) {
if (i < last) it[i++] = *s;
s++;
}
}
it[i] = '\0';
return s;
}
void OE_path::pathMoveTo(OE_curve* curve, float* cpx, float* cpy, float* args, int rel)
{
if (rel) {
*cpx += args[0];
*cpy += args[1];
} else {
*cpx = args[0];
*cpy = args[1];
}
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
}
void OE_path::pathLineTo(OE_curve* curve, float* cpx, float* cpy, float* args, int rel)
{
if (rel) {
*cpx += args[0];
*cpy += args[1];
} else {
*cpx = args[0];
*cpy = args[1];
}
curve->lineTo(*cpx, *cpy);
}
void OE_path::pathHLineTo(OE_curve* curve, float* cpx, float* cpy, float* args, int rel)
{
if (rel)
*cpx += args[0];
else
*cpx = args[0];
curve->lineTo(*cpx, *cpy);
}
void OE_path::pathVLineTo(OE_curve* curve, float* cpx, float* cpy, float* args, int rel)
{
if (rel)
*cpy += args[0];
else
*cpy = args[0];
curve->lineTo(*cpx, *cpy);
}
void OE_path::pathCubicBezTo(OE_curve* curve, float* cpx, float* cpy, float* cpx2, float* cpy2, float* args, int rel)
{
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
if (rel) {
cx1 = *cpx + args[0];
cy1 = *cpy + args[1];
cx2 = *cpx + args[2];
cy2 = *cpy + args[3];
x2 = *cpx + args[4];
y2 = *cpy + args[5];
} else {
cx1 = args[0];
cy1 = args[1];
cx2 = args[2];
cy2 = args[3];
x2 = args[4];
y2 = args[5];
}
curve->cubicBezTo(cx1,cy1, cx2,cy2, x2,y2);
*cpx2 = cx2;
*cpy2 = cy2;
*cpx = x2;
*cpy = y2;
}
void OE_path::pathCubicBezShortTo(OE_curve* curve, float* cpx, float* cpy, float* cpx2, float* cpy2, float* args, int rel)
{
float x1, y1, x2, y2, cx1, cy1, cx2, cy2;
x1 = *cpx;
y1 = *cpy;
if (rel) {
cx2 = *cpx + args[0];
cy2 = *cpy + args[1];
x2 = *cpx + args[2];
y2 = *cpy + args[3];
} else {
cx2 = args[0];
cy2 = args[1];
x2 = args[2];
y2 = args[3];
}
cx1 = 2*x1 - *cpx2;
cy1 = 2*y1 - *cpy2;
curve->cubicBezTo(cx1,cy1, cx2,cy2, x2,y2);
*cpx2 = cx2;
*cpy2 = cy2;
*cpx = x2;
*cpy = y2;
}
void OE_path::pathQuadBezTo(OE_curve* curve, float* cpx, float* cpy, float* cpx2, float* cpy2, float* args, int rel)
{
float x1, y1, x2, y2, cx, cy;
float cx1, cy1, cx2, cy2;
x1 = *cpx;
y1 = *cpy;
if (rel) {
cx = *cpx + args[0];
cy = *cpy + args[1];
x2 = *cpx + args[2];
y2 = *cpy + args[3];
} else {
cx = args[0];
cy = args[1];
x2 = args[2];
y2 = args[3];
}
// Convert to cubic bezier
cx1 = x1 + 2.0f/3.0f*(cx - x1);
cy1 = y1 + 2.0f/3.0f*(cy - y1);
cx2 = x2 + 2.0f/3.0f*(cx - x2);
cy2 = y2 + 2.0f/3.0f*(cy - y2);
curve->cubicBezTo(cx1,cy1, cx2,cy2, x2,y2);
*cpx2 = cx;
*cpy2 = cy;
*cpx = x2;
*cpy = y2;
}
void OE_path::pathQuadBezShortTo(OE_curve* curve, float* cpx, float* cpy, float* cpx2, float* cpy2, float* args, int rel)
{
float x1, y1, x2, y2, cx, cy;
float cx1, cy1, cx2, cy2;
x1 = *cpx;
y1 = *cpy;
if (rel) {
x2 = *cpx + args[0];
y2 = *cpy + args[1];
} else {
x2 = args[0];
y2 = args[1];
}
cx = 2*x1 - *cpx2;
cy = 2*y1 - *cpy2;
// Convert to cubix bezier
cx1 = x1 + 2.0f/3.0f*(cx - x1);
cy1 = y1 + 2.0f/3.0f*(cy - y1);
cx2 = x2 + 2.0f/3.0f*(cx - x2);
cy2 = y2 + 2.0f/3.0f*(cy - y2);
curve->cubicBezTo(cx1,cy1, cx2,cy2, x2,y2);
*cpx2 = cx;
*cpy2 = cy;
*cpx = x2;
*cpy = y2;
}
void OE_path::pathArcTo(OE_curve* curve, float* cpx, float* cpy, float* args, int rel)
{
// Ported from canvg (https://code.google.com/p/canvg/)
float rx, ry, rotx;
float x1, y1, x2, y2, cx, cy, dx, dy, d;
float x1p, y1p, cxp, cyp, s, sa, sb;
float ux, uy, vx, vy, a1, da;
float x, y, tanx, tany, a, px = 0, py = 0, ptanx = 0, ptany = 0, t[6];
float sinrx, cosrx;
int fa, fs;
int i, ndivs;
float hda, kappa;
rx = fabsf(args[0]); // y radius
ry = fabsf(args[1]); // x radius
rotx = args[2] / 180.0f * M_PI ; // x rotation engle
fa = fabsf(args[3]) > 1e-6 ? 1 : 0; // Large arc
fs = fabsf(args[4]) > 1e-6 ? 1 : 0; // Sweep direction
x1 = *cpx; // start point
y1 = *cpy;
if (rel) { // end point
x2 = *cpx + args[5];
y2 = *cpy + args[6];
} else {
x2 = args[5];
y2 = args[6];
}
dx = x1 - x2;
dy = y1 - y2;
d = sqrtf(dx*dx + dy*dy);
if (d < 1e-6f || rx < 1e-6f || ry < 1e-6f) {
// The arc degenerates to a line
curve->lineTo(x2, y2);
*cpx = x2;
*cpy = y2;
return;
}
sinrx = sinf(rotx);
cosrx = cosf(rotx);
// Convert to center point parameterization.
// http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
// 1) Compute x1', y1'
x1p = cosrx * dx / 2.0f + sinrx * dy / 2.0f;
y1p = -sinrx * dx / 2.0f + cosrx * dy / 2.0f;
d = sqr(x1p)/sqr(rx) + sqr(y1p)/sqr(ry);
if (d > 1) {
d = sqrtf(d);
rx *= d;
ry *= d;
}
// 2) Compute cx', cy'
s = 0.0f;
sa = sqr(rx)*sqr(ry) - sqr(rx)*sqr(y1p) - sqr(ry)*sqr(x1p);
sb = sqr(rx)*sqr(y1p) + sqr(ry)*sqr(x1p);
if (sa < 0.0f) sa = 0.0f;
if (sb > 0.0f)
s = sqrtf(sa / sb);
if (fa == fs)
s = -s;
cxp = s * rx * y1p / ry;
cyp = s * -ry * x1p / rx;
// 3) Compute cx,cy from cx',cy'
cx = (x1 + x2)/2.0f + cosrx*cxp - sinrx*cyp;
cy = (y1 + y2)/2.0f + sinrx*cxp + cosrx*cyp;
// 4) Calculate theta1, and delta theta.
ux = (x1p - cxp) / rx;
uy = (y1p - cyp) / ry;
vx = (-x1p - cxp) / rx;
vy = (-y1p - cyp) / ry;
a1 = vecang(1.0f,0.0f, ux,uy); // Initial angle
da = vecang(ux,uy, vx,vy); // Delta angle
// if (vecrat(ux,uy,vx,vy) <= -1.0f) da = NSVG_PI;
// if (vecrat(ux,uy,vx,vy) >= 1.0f) da = 0;
if (fa) {
// Choose large arc
if (da > 0.0f)
da = da - 2*M_PI;
else
da = 2*M_PI + da;
}
// Approximate the arc using cubic spline segments.
t[0] = cosrx; t[1] = sinrx;
t[2] = -sinrx; t[3] = cosrx;
t[4] = cx; t[5] = cy;
// Split arc into max 90 degree segments.
// The loop assumes an iteration per end point (including start and end), this +1.
ndivs = (int)(fabsf(da) / (M_PI*0.5f) + 1.0f);
hda = (da / (float)ndivs) / 2.0f;
kappa = fabsf(4.0f / 3.0f * (1.0f - cosf(hda)) / sinf(hda));
if (da < 0.0f)
kappa = -kappa;
for (i = 0; i <= ndivs; i++) {
a = a1 + da * (i/(float)ndivs);
dx = cosf(a);
dy = sinf(a);
xformPoint(&x, &y, dx*rx, dy*ry, t); // position
xformVec(&tanx, &tany, -dy*rx * kappa, dx*ry * kappa, t); // tangent
if (i > 0)
curve->cubicBezTo(px+ptanx,py+ptany, x-tanx, y-tany, x, y);
px = x;
py = y;
ptanx = tanx;
ptany = tany;
}
*cpx = x2;
*cpy = y2;
}
const char* OE_path::getNextPathItem(const char* s, char* it)
{
it[0] = '\0';
// Skip white spaces and commas
while (*s && (isspace(*s) || *s == ',')) s++;
if (!*s) return s;
if (*s == '-' || *s == '+' || *s == '.' || isdigit(*s)) {
s = parseNumber(s, it, 64);
} else {
// Parse command
it[0] = *s++;
it[1] = '\0';
return s;
}
return s;
}
int OE_path::getArgsPerElement(char cmd)
{
switch (cmd) {
case 'v':
case 'V':
case 'h':
case 'H':
return 1;
case 'm':
case 'M':
case 'l':
case 'L':
case 't':
case 'T':
return 2;
case 'q':
case 'Q':
case 's':
case 'S':
return 4;
case 'c':
case 'C':
return 6;
case 'a':
case 'A':
return 7;
}
return 0;
}
bool OE_path::newCurve()
{
OE_curve* curve = new OE_curve();
if (curve)
{
if(!curve->setNext(curves))
{
delete curve;
return false;
}
//curve->next = curves;
curves = curve;
return true;
}
return false;
}
bool OE_path::Parse(TiXmlElement *input)
{
if (input)
{
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
const char * s = input->Attribute("d");
//const char** attr;
//const char* s = NULL;
char cmd = '\0';
float args[10];
int nargs;
int rargs = 0; /*nb arg after a command*/
float cpx, cpy, cpx2, cpy2;
// const char* tmp[4];
// char closedFlag;
char item[64];
/*
for (i = 0; attr[i]; i += 2) {
if (strcmp(attr[i], "d") == 0) {
s = attr[i + 1];
} else {
tmp[0] = attr[i];
tmp[1] = attr[i + 1];
tmp[2] = 0;
tmp[3] = 0;
nsvg__parseAttribs(p, tmp);
}
}*/
if (s) {
//nsvg__resetPath(p);
if (newCurve())
{
cpx = 0; cpy = 0;
//closedFlag = 0;
nargs = 0;
while (*s) {
s = getNextPathItem(s, item);
if (!*item) break;
if (isnum(item[0])) {
if (nargs < 10)
args[nargs++] = (float)atof(item);
if (nargs >= rargs) {
switch (cmd) {
case 'm':
case 'M':
pathMoveTo(curves, &cpx, &cpy, args, cmd == 'm' ? 1 : 0);
// Moveto can be followed by multiple coordinate pairs,
// which should be treated as linetos.
cmd = (cmd == 'm') ? 'l' : 'L';
rargs = getArgsPerElement(cmd);
cpx2 = cpx; cpy2 = cpy;
break;
case 'l':
case 'L':
pathLineTo(curves, &cpx, &cpy, args, cmd == 'l' ? 1 : 0);
cpx2 = cpx; cpy2 = cpy;
break;
case 'H':
case 'h':
pathHLineTo(curves, &cpx, &cpy, args, cmd == 'h' ? 1 : 0);
cpx2 = cpx; cpy2 = cpy;
break;
case 'V':
case 'v':
pathVLineTo(curves, &cpx, &cpy, args, cmd == 'v' ? 1 : 0);
cpx2 = cpx; cpy2 = cpy;
break;
case 'C':
case 'c':
pathCubicBezTo(curves, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 'c' ? 1 : 0);
break;
case 'S':
case 's':
pathCubicBezShortTo(curves, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 's' ? 1 : 0);
break;
case 'Q':
case 'q':
pathQuadBezTo(curves, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 'q' ? 1 : 0);
break;
case 'T':
case 't':
pathQuadBezShortTo(curves, &cpx, &cpy, &cpx2, &cpy2, args, cmd == 's' ? 1 : 0);
break;
case 'A':
case 'a':
pathArcTo(curves, &cpx, &cpy, args, cmd == 'a' ? 1 : 0);
cpx2 = cpx; cpy2 = cpy;
break;
default:
if (nargs >= 2) {
cpx = args[nargs-2];
cpy = args[nargs-1];
cpx2 = cpx; cpy2 = cpy;
}
break;
}
nargs = 0;
}
} else {
cmd = item[0];
rargs = getArgsPerElement(cmd); //give us the number of arguments
if (cmd == 'M' || cmd == 'm') {
// Commit path.
if (curves->getNpts() > 0)
{
// Start new subpath.
newCurve();
}
//nsvg__addPath(p, closedFlag);
//nsvg__resetPath(p);
// closedFlag = 0;
nargs = 0;
} else if (cmd == 'Z' || cmd == 'z') {
curves->setClosed(true);
//closedFlag = 1;
// Commit path.
if (curves->getNpts() > 0) {
// Move current point to first point
curves->getPoint(1,&cpx,&cpy);
//cpx = curves->pts[0];
//cpy = curves->pts[1];
cpx2 = cpx; cpy2 = cpy;
//nsvg__addPath(p, closedFlag);
}
//closedFlag = 0;
nargs = 0;
}
}
/*
if (curves->getNpts()==0)
{
OE_curve* curve = curves->next;
delete curves;
curves = curve;
}*/
}
// Commit path.
/*
else
{
OE_curve* curve = curves->next;
delete curves;
curves = curve;
}*/
//nsvg__addPath(p, closedFlag);
//float xMin, yMin, xMax, yMax;
//curve->getBound(&xMin, &yMin, &xMax, &yMax);
return true;
}
}
}
//nsvg__addShape(p);
//OE_svg_base::Parse(input);
return false;
}
bool OE_path::draw(float dpi)
{
OE_svg_base::draw(dpi);
OE_curve *curve;
curve = curves;
while (curve != 0) {
curve->draw(dpi);
curve = curve->getNext();
}
return true;
}