Skip to content
boitarire_sw.ino 20.2 KiB
Newer Older
/*
  Boitarire software

  Plays a sound through an external MP3 module
  when triggered by external sensor : 
  - inclination switch
  - accelerometer module
  - touch sensors
  Configuration is selected through compilation switches.
  Uses an editable playlist allowing any song order, 
    up to 255 different songs in the playlist, individual
    repetition number for eah song.

  created 25 nov 2021
  by Florian Savard

  This example code is in the public domain.

  https://code.electrolab.fr/Flax/boitarire
*/

#include<Wire.h>

// Defines - Macros - Constants

//#define SENSOR_INCLINATION
#define SENSOR_ACCELEROMETER
//#define SENSOR_TOUCH_SENSOR1
//#define SENSOR_TOUCH_SENSOR2


// Other constants
//Hardwaere constatnts : do not modify >_< !
#define PIN_SENSOR_POSITION 9     // Position sensor input                    - Input low = upside down
#define PIN_TOUCH_SENSOR1   8     // Touch sensor 1 input                     - Input active high
#define PIN_TOUCH_SENSOR2   5     // Touch sensor 2 input                     - Input active high
#define PIN_GROUND_SWITCH   7     // MP3 module ground switch command output  - Output active high
#define PIN_BUSY            2     // MP3 module busy signal                   - Input active low

//Calibration constants : do adjust :-)
//#define MP3_RESET
//
//#define DEBUG_UART_ACCELEROMETER // Warning : conflict with MP3 player
#define ACCEL_ROTATION_DETECT     // When set with SENSOR_ACCELEROMETER, trigger is activated on rotation detection, instead of raw movement threshold
#define DELAY_MP3_RESET     100   // Time of ground cut of MP3 module for re-init (ms) : Adjust only if hardware proiblems with new revisions of the mp3 module
#define DEBOUNCE_DELAY      200   // Position sensor input debounce (ms)
#define ACCEL_THRES_GYX     9999  // Detection threshold for X axis acceleration
#define ACCEL_THRES_GYY     9999  // Detection threshold for Y axis acceleration
#define ACCEL_THRES_GYZ     25000 // Detection threshold for Z axis acceleration
#define ACCEL_THRES_ROT     200   // Rotation threshold detection, for rotational speed integration pre-filtering
#define ACCEL_TRIG_ROT      2000  // Rotational distance to be traveled to trigger detection
#define PLAYLIST_LENGTH     4     // Number of songs in the playlist

// Typedefs
// Main state machine : start actions
typedef enum 
{
  //Initialisation
  STM_INIT,
  //Wainting for input (capteur)
  STM_IDLE,
  //When input, play sample
  STM_PLAY,
  //Waiting after playing sample
  STM_BLANK,
  //Optional hardware reset of the MP3 module (See calibration constants for activation)
  STM_MP3_RESET,
} tStateMachine;

typedef enum
{
  STM_DEBOUNCE_IDLE_0,
  STM_DEBOUNCE_IDLE_1,
  STM_DEBOUNCE_DETECT_0,
  STM_DEBOUNCE_DETECT_1,
  STM_DEBOUNCE_DEBOUNCE_0,
  STM_DEBOUNCE_DEBOUNCE_1,
} tStateMachineDebounce;

typedef struct 
{
  uint8_t song_index_u8;       // Index of the song in the device /!\ counts from 0
  uint8_t cycles_number_u8;    // Number of times the song must be played before switching to the next
  uint16_t blank_delay_u16;  // Blanking time for the song (ms)
} tSongItem;

/* Accelerometer sample structure
 * Stores two samples, filtered value, integrated value
 */
typedef struct
{
  int16_t sample1_s16;
  int16_t sample2_s16;
  int16_t sample_filt_s16;
  int16_t sample_int_s16;
} tAccelSample;

/* Accelerometer samples
 * Stores all samples for signal processing of accelerometer data
 */
typedef struct
{
  tAccelSample AcX; // X linear axis
  tAccelSample AcY; // Y linear axis
  tAccelSample AcZ; // Z linear axis
  tAccelSample GyX; // X rotational axis
  tAccelSample GyY; // Y rotational axis
  tAccelSample GyZ; // Z rotational axis
} tAccelData;

// Constant variables

/* Indifference table for songs cycles
 *  Contains the indexes of the songs to be played and the number of times each one must be played.
 *  Contains couples {index of the song in the MP3 device memory, number of times the song must be played, blanking time},
 *  Playlist cycles from first element to last and loops.
 *  Don't forget to update PLAYLIST_LENGTH define.
 */
const tSongItem cPlaylistIndif_TA[PLAYLIST_LENGTH] =
{
String inputString = "";         // a String to hold incoming data
bool stringComplete = false;  // whether the string is complete

unsigned long debounce_delay;
int input_position_sensor, input_touch_sensor1, input_touch_sensor2;
unsigned long play_blank_delay, play_blank_delay_threshold, mp3_reset_delay;
unsigned long millis_temp;

const int MPU=0x68; 
int16_t Tmp;
tAccelData AccelData_T;
bool accel_detect_x, accel_detect_y, accel_detect_z;

uint8_t song_cycles_cnt_u8;       // Counts the number of times the current song has been played
uint8_t song_playing_current_u8;  // Holds the index of the playlist song actually being played

// State machines states
tStateMachine stmState;
tStateMachineDebounce stmDebounceState;

// Local function prototypes
void ReadPlayState (void);
void WritePlay (void);
void WritePlaySong (uint16_t index);
uint8_t CrcCalculate (uint8_t *buff, uint8_t size);

// Setup function
void setup() {
  // Initialize serial:
  Serial.begin(9600);
  // Reserve 200 bytes for the inputString:
  inputString.reserve(200);

  // Position sensor input pin - See hardware constants for pin definition - Input pull-up
  pinMode(PIN_SENSOR_POSITION, INPUT_PULLUP);

  // Touch sensor 1 input pin - See hardware constants for pin definition - Input no pull
  pinMode(PIN_TOUCH_SENSOR1, INPUT);

  // Touch sensor 2 input pin - See hardware constants for pin definition - Input no pull
  pinMode(PIN_TOUCH_SENSOR2, INPUT);

  // LED output for visualisation
  pinMode(LED_BUILTIN, OUTPUT);

  // MP3 module ground switch command - See hardware constants for pin definition - Output push-pull
  pinMode(PIN_GROUND_SWITCH, OUTPUT);

  // MP3 module BUSY signal
  pinMode(PIN_BUSY, INPUT);

  //Initialise variables, do not define constants value here
  play_blank_delay = 0;
  mp3_reset_delay = 0;
  stmState = STM_INIT;
  stmDebounceState = STM_DEBOUNCE_IDLE_0;
  debounce_delay = 0;
  input_position_sensor = LOW;
  input_touch_sensor1 = LOW;
  input_touch_sensor2 = LOW;
  song_cycles_cnt_u8 = 0;
  song_playing_current_u8 = 0;

#ifdef SENSOR_ACCELEROMETER
  // Accelerometer setup
  Wire.begin();
  Wire.beginTransmission(MPU);
  Wire.write(0x6B); 
  Wire.write(0);    
  Wire.endTransmission(true);

  // Set FIFO enable register
  /* Wire.beginTransmission(MPU);
  Wire.write(0x23); 
  Wire.write(0x78);    
  Wire.endTransmission(true);*/

  // Set filters
  Wire.beginTransmission(MPU);
  Wire.write(0x1A); 
  Wire.write(0x06);    
  Wire.endTransmission(true);
#endif
  accel_detect = false;

  // Connect ground for MP3 module
  digitalWrite(PIN_GROUND_SWITCH, HIGH);
}

// Main loop
void loop() {
  // print the string when a newline arrives: for debug purposes only
  if (stringComplete) {
    Serial.println(inputString);

    switch (inputString[0])
    {
      case 0x30:
        // Play first song in the device
        WritePlaySong(1);
        break;
      case 0x31:
        // Play second song in the device
        WritePlaySong(2);
        break;
      default:
        break;
    }
    
    // clear the string:
    inputString = "";
    stringComplete = false;
  }

#ifdef SENSOR_ACCELEROMETER
  // Accelerometer communication
  Wire.beginTransmission(MPU);
  Wire.write(0x3B);  
  Wire.endTransmission(false);
  Wire.requestFrom(MPU,14,true);  
  AccelData_T.AcX.sample1_s16=Wire.read()<<8|Wire.read();   
  AccelData_T.AcY.sample1_s16=Wire.read()<<8|Wire.read(); 
  AccelData_T.AcZ.sample1_s16=Wire.read()<<8|Wire.read(); 
  Tmp=Wire.read()<<8|Wire.read();  
  AccelData_T.GyX.sample1_s16=Wire.read()<<8|Wire.read();   
  AccelData_T.GyY.sample1_s16=Wire.read()<<8|Wire.read(); 
  AccelData_T.GyZ.sample1_s16=Wire.read()<<8|Wire.read(); 

#ifdef ACCEL_ROTATION_DETECT
/*
 * Rotation detection
 * Detection is done independantely on each axis.
 * On each axis, Gy... input is filtered high-pass in order to filter the idle / background noise.
 * High(pass filter is standard first order IIR with alpha = 0.5.
 * If the high-pass filtered data reaches the ACCEL_THRES_ROT threshold, or if the unfiltered data reaches  2^4 times ACCEL_THRES_ROT, 
 *   the data is then considered valid and integrated.
 * Once valid, the input measure is added to the integrated data.
 * Once the integrated data reaches ACCEL_TRIG_ROT, a trig is launched on this axis.
 * A trigger occurs if any of the three axis is triggered.
 */
 
  // X axis processing -----
  // GyX high-pass filtering
  AccelData_T.GyX.sample_filt_s16 = (AccelData_T.GyX.sample_filt_s16 + (AccelData_T.GyX.sample1_s16 - AccelData_T.GyX.sample2_s16)) >> 1;
  if ((AccelData_T.GyX.sample1_s16 > (ACCEL_THRES_ROT << 4)) ||
      (AccelData_T.GyX.sample1_s16 < -(ACCEL_THRES_ROT << 4)) ||
      (AccelData_T.GyX.sample_filt_s16 > ACCEL_THRES_ROT) || 
      (AccelData_T.GyX.sample_filt_s16 < -(ACCEL_THRES_ROT))) // Threshold for movement detection
  {
    AccelData_T.GyX.sample_int_s16 += (AccelData_T.GyX.sample1_s16 >> 9); // Integration
  }

  if ((AccelData_T.GyX.sample_int_s16 > ACCEL_TRIG_ROT) ||
      (AccelData_T.GyX.sample_int_s16 < -(ACCEL_TRIG_ROT)))
  {
    AccelData_T.GyX.sample_int_s16 = 0; // Reset integrator
    accel_detect_x = true;
  }
  else
  {
    accel_detect_x = false;
  }
  
  AccelData_T.GyX.sample2_s16=AccelData_T.GyX.sample1_s16; // N-1 sample memorisation

  // Y Axis processing -----
  // GyY high-pass filtering
  AccelData_T.GyY.sample_filt_s16 = (AccelData_T.GyY.sample_filt_s16 + (AccelData_T.GyY.sample1_s16 - AccelData_T.GyY.sample2_s16)) >> 1;
  
  if ((AccelData_T.GyY.sample1_s16 > (ACCEL_THRES_ROT << 4)) ||
      (AccelData_T.GyY.sample1_s16 < -(ACCEL_THRES_ROT << 4)) ||
      (AccelData_T.GyY.sample_filt_s16 > ACCEL_THRES_ROT) || 
      (AccelData_T.GyY.sample_filt_s16 < -(ACCEL_THRES_ROT))) // Threshold for movement detection
  {
    AccelData_T.GyY.sample_int_s16 += (AccelData_T.GyY.sample1_s16 >> 9); // Integration
  }

  if ((AccelData_T.GyY.sample_int_s16 > ACCEL_TRIG_ROT) ||
      (AccelData_T.GyY.sample_int_s16 < -(ACCEL_TRIG_ROT)))
  {
    AccelData_T.GyY.sample_int_s16 = 0; // Reset integrator
    accel_detect_y = true;
  }
  else
  {
    accel_detect_y = false;
  }
  
  AccelData_T.GyY.sample2_s16=AccelData_T.GyY.sample1_s16; // N-1 sample memorisation
  
  // Z Axis processing -----
  // GyZ high-pass filtering
  AccelData_T.GyZ.sample_filt_s16 = (AccelData_T.GyZ.sample_filt_s16 + (AccelData_T.GyZ.sample1_s16 - AccelData_T.GyZ.sample2_s16)) >> 1;
  
  if ((AccelData_T.GyZ.sample1_s16 > (ACCEL_THRES_ROT << 4)) ||
      (AccelData_T.GyZ.sample1_s16 < -(ACCEL_THRES_ROT << 4)) ||
      (AccelData_T.GyZ.sample_filt_s16 > ACCEL_THRES_ROT) || 
      (AccelData_T.GyZ.sample_filt_s16 < -(ACCEL_THRES_ROT))) // Threshold for movement detection
  {
    AccelData_T.GyZ.sample_int_s16 += (AccelData_T.GyZ.sample1_s16 >> 9); // Integration
  }

  if ((AccelData_T.GyZ.sample_int_s16 > ACCEL_TRIG_ROT) ||
      (AccelData_T.GyZ.sample_int_s16 < -(ACCEL_TRIG_ROT)))
  {
    AccelData_T.GyZ.sample_int_s16 = 0; // Reset integrator
    accel_detect_z = true;
  }
  else
  {
    accel_detect_z = false;
  }
  
  AccelData_T.GyZ.sample2_s16=AccelData_T.GyZ.sample1_s16; // N-1 sample memorisation

  // Concatenation of the three axis
  accel_detect = accel_detect_x || accel_detect_y ||accel_detect_z;

#else //ACCEL_ROTATION_DETECT
  if ((AccelData_T.GyX.sample1_s16 > ACCEL_THRES_GYX) || 
      (AccelData_T.GyY.sample1_s16 > ACCEL_THRES_GYY) || 
      (AccelData_T.GyZ.sample1_s16 > ACCEL_THRES_GYZ) || 
      (AccelData_T.GyX.sample1_s16 < ((int16_t)(-1) * ACCEL_THRES_GYX)) ||
      (AccelData_T.GyY.sample1_s16 < ((int16_t)(-1) * ACCEL_THRES_GYY)) ||
      (AccelData_T.GyZ.sample1_s16 < ((int16_t)(-1) * ACCEL_THRES_GYZ)))
  {
    accel_detect = true;
  }
  else
  {
    accel_detect = false;
  }
#endif //ACCEL_ROTATION_DETECT
#else //SENSOR_ACCELEROMETER
  
#ifdef SENSOR_INCLINATION
  // Read instantaneous value of position sensor
  input_position_sensor = digitalRead(PIN_SENSOR_POSITION);
  input_position_sensor = LOW;

  // Inclination debounce state machine
  //-----------------------------------
  switch (stmDebounceState)
  {
    case STM_DEBOUNCE_IDLE_0:
      if (input_position_sensor == HIGH)
      {
        stmDebounceState = STM_DEBOUNCE_DETECT_1;
        debounce_delay = millis();
      }
    break;

    case STM_DEBOUNCE_IDLE_1:
      if (input_position_sensor == LOW)
      {
        stmDebounceState = STM_DEBOUNCE_DETECT_0;
        debounce_delay = millis();
      }
    break;

    case STM_DEBOUNCE_DETECT_0:
      millis_temp = millis();
      if (input_position_sensor == HIGH)
      {
        stmDebounceState = STM_DEBOUNCE_IDLE_1;
      }
      else if ((millis_temp >= debounce_delay) && ((millis_temp - debounce_delay) > DEBOUNCE_DELAY))
      {
        stmDebounceState = STM_DEBOUNCE_DEBOUNCE_0;
      }
      else if (millis_temp < debounce_delay)
      { // Overflow protection for uptime of several weeks or more.
        debounce_delay = 0;
      }
    break;

    case STM_DEBOUNCE_DETECT_1:
      millis_temp = millis();
      if (input_position_sensor == LOW)
      {
        stmDebounceState = STM_DEBOUNCE_IDLE_0;
      }
      else if ((millis_temp >= debounce_delay) && ((millis_temp - debounce_delay) > DEBOUNCE_DELAY))
      {
        stmDebounceState = STM_DEBOUNCE_DEBOUNCE_1;
      }
      else if (millis_temp < debounce_delay)
      { // Overflow protection for uptime of several weeks or more.
        debounce_delay = 0;
      }
    break;

    case STM_DEBOUNCE_DEBOUNCE_0:
      stmDebounceState = STM_DEBOUNCE_IDLE_0;
      //digitalWrite(LED_BUILTIN, LOW); // DEBUG
    break;

    case STM_DEBOUNCE_DEBOUNCE_1:
      stmDebounceState = STM_DEBOUNCE_IDLE_1;
      //digitalWrite(LED_BUILTIN, HIGH); // DEBUG
    break;

    default:
    break;
  }

#ifdef SENSOR_TOUCH_SENSOR1
  input_touch_sensor1 = digitalRead(PIN_TOUCH_SENSOR1);
#else
  input_touch_sensor1 = LOW;
#endif

#ifdef SENSOR_TOUCH_SENSOR2
  input_touch_sensor2 = digitalRead(PIN_TOUCH_SENSOR2);
#else
  input_touch_sensor2 = LOW;
#endif
  
  // Main state machine
  //-------------------
  switch (stmState)
  {
  //Init is not used, here for future use and coding best practice
    case STM_INIT:
      stmState = STM_IDLE;
    break;

    case STM_IDLE:
      //digitalWrite(LED_BUILTIN, LOW); // DEBUG
      if ((stmDebounceState == STM_DEBOUNCE_DEBOUNCE_1) || 
          (input_touch_sensor1 == HIGH) || 
          (input_touch_sensor2 == HIGH) ||
          (accel_detect == true))
      {
        stmState = STM_PLAY;
      }
    break;

    case STM_PLAY:
      WritePlaySong(cPlaylistIndif_TA[song_playing_current_u8].song_index_u8 + 1U); // Play the current song
      //digitalWrite(LED_BUILTIN, HIGH); // DEBUG
      play_blank_delay_threshold = cPlaylistIndif_TA[song_playing_current_u8].blank_delay_u16; // Load blankig time for the current song
      song_cycles_cnt_u8++;                                                         // Increment cycles counter
      
      if (song_cycles_cnt_u8 >= cPlaylistIndif_TA[song_playing_current_u8].cycles_number_u8)
      { // Check cycles counter overflow
        song_cycles_cnt_u8 = 0;     // Reset the cycles counter
        song_playing_current_u8++;  // Increment the playlist counter
      }

      if (song_playing_current_u8 >= PLAYLIST_LENGTH)
      { // Check playlist song counter overflow
        song_playing_current_u8 = 0;
      }
      
      play_blank_delay = millis(); // Record current time for blanking delay measurement
      stmState = STM_BLANK;
    break;

    case STM_BLANK:
      millis_temp = millis(); // Get current time

      if ((millis_temp >= play_blank_delay) && ((millis_temp - play_blank_delay) > play_blank_delay_threshold))
      { // Compare current time with the memorised time at song start
#ifdef MP3_RESET
        stmState = STM_MP3_RESET;
        mp3_reset_delay = millis(); // Record current time for reset delay measurement
        digitalWrite(PIN_GROUND_SWITCH, LOW);
#else // MP3_RESET
        stmState = STM_IDLE;
#endif // MP3_RESET
      }
      else if (millis_temp < play_blank_delay)
      { // Overflow protection for uptime of several weeks or more.
        play_blank_delay = 0;
      }
    break;

    case STM_MP3_RESET:
      millis_temp = millis();
      //digitalWrite(LED_BUILTIN, LOW); // DEBUG
      if ((millis_temp >= mp3_reset_delay) && ((millis_temp - mp3_reset_delay) > DELAY_MP3_RESET))
      {
        stmState = STM_IDLE;
        digitalWrite(PIN_GROUND_SWITCH, HIGH);
      }
      else if (millis_temp < mp3_reset_delay)
      { // Overflow protection for uptime of several weeks or more.
        mp3_reset_delay = 0;
      }
    break;

    default:
      stmState = STM_INIT;
    break;
  }

#ifdef DEBUG_UART_ACCELEROMETER
  // Format : https://diyrobocars.com/2020/05/04/arduino-serial-plotter-the-missing-manual/
  // Adapted for serial plotter
  // //Serial.print("Accelerometer: ");
  //Serial.print("X:"); Serial.print(AccelData_T.AcX.sample1_s16);Serial.print(",");
  //Serial.print("Y:"); Serial.print(AccelData_T.AcY.sample1_s16);Serial.print(",");
  //Serial.print("Z:"); Serial.print(AccelData_T.AcZ.sample1_s16);Serial.print(",");
  //Serial.print("Gyroscope: ");
  //Serial.print("GX:"); Serial.print(AccelData_T.GyX.sample1_s16);Serial.print(",");
  //Serial.print("GY:"); Serial.print(AccelData_T.GyY.sample1_s16);Serial.print(",");
  //Serial.print("GZ:"); Serial.print(AccelData_T.GyZ.sample1_s16);Serial.print(",");
  //Serial.print("GXfilt:"); Serial.print(AccelData_T.GyX.sample_filt_s16);Serial.print(",");
  Serial.print("GXint:"); Serial.print(AccelData_T.GyX.sample_int_s16);Serial.print(",");
  Serial.print("GYint:"); Serial.print(AccelData_T.GyY.sample_int_s16);Serial.print(",");
  Serial.print("GZint:"); Serial.print(AccelData_T.GyZ.sample_int_s16);Serial.print(",");

  Serial.print("Temp:"); Serial.println(Tmp);
  //Serial.println(" ");
#endif
}

/*
  SerialEvent occurs whenever a new data comes in the hardware serial RX. This
  routine is run between each time loop() runs, so using delay inside loop can
  delay response. Multiple bytes of data may be available.
*/
void serialEvent() {
  while (Serial.available()) {
    // get the new byte:
    char inChar = (char)Serial.read();
    // add it to the inputString:
    inputString += inChar;
    // if the incoming character is a newline, set a flag so the main loop can
    // do something about it:
    if (inChar == '\n') {
      stringComplete = true;
    }
  }
}

void ReadPlayState (void)
{
  // Send Play State read request
  Serial.write(170); // 0xAA
  Serial.write(1);   // 0x01
  Serial.write(0);   // 0x00
  Serial.write(171); // 0xAB
}

void WritePlay (void)
{
  // Send Play request
  Serial.write(170); // 0xAA
  Serial.write(2);   // 0x02
  Serial.write(0);   // 0x00
  Serial.write(172); // 0xAC
}

void WritePlaySong (uint16_t index)
{
  uint8_t buffer_u8A[5];
  buffer_u8A[0] = 0xAA;
  buffer_u8A[1] = 0x07;
  buffer_u8A[2] = 0x02;
  buffer_u8A[3] = (uint8_t)((index >> 8U) & (uint16_t)0x00FF);
  buffer_u8A[4] = (uint8_t)(index & (uint16_t)0x00FF);
  uint8_t crc_u8 = CrcCalculate(buffer_u8A, 5);
  // Send Play request
  Serial.write((int)buffer_u8A[0]); // 0xAA
  Serial.write((int)buffer_u8A[1]); // 0x07
  Serial.write((int)buffer_u8A[2]); // 0x02
  Serial.write((int)buffer_u8A[3]); // Song number high byte
  Serial.write((int)buffer_u8A[4]); // Song number low byte
  Serial.write((int)crc_u8);        // CRC
}

uint8_t CrcCalculate (uint8_t *buff, uint8_t size)
{
  uint16_t ret_u16 = 0;
  uint8_t cnt_u8 = 0;

  for (cnt_u8 = 0; cnt_u8 < size; cnt_u8++)
  {
    ret_u16 += *(buff + cnt_u8);
  }

  return ((uint8_t)(ret_u16 & (uint16_t)0x00FF));