Skip to content
Spline.py 22.8 KiB
Newer Older
Fabrice Salvaire's avatar
Fabrice Salvaire committed
####################################################################################################
#
# Patro - A Python library to make patterns for fashion design
# Copyright (C) 2017 Fabrice Salvaire
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
####################################################################################################

Fabrice Salvaire's avatar
Fabrice Salvaire committed
r"""Module to implement Spline curve.

B-spline Basis
--------------

Fabrice Salvaire's avatar
Fabrice Salvaire committed
A nonuniform, nonrational B-spline of order `k` is a piecewise polynomial function of degree
:math:`k - 1` in a variable `t`.
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
.. check: k+1 knots ???

.. It is defined over :math:`k + 1` locations :math:`t_i`, called knots, which must be in
   non-descending order :math:`t_i \leq t_{i+1}`. This series defines a knot vector :math:`T = (t_0,
   \ldots, t_{k})`.

A set of non-descending breaking points, called knot, :math:`t_0 \le t_1 \le \ldots \le t_m` defines
a knot vector :math:`T = (t_0, \ldots, t_{m})`.

If each knot is separated by the same distance `h` (where :math:`h = t_{i+1} - t_i`) from its
Fabrice Salvaire's avatar
Fabrice Salvaire committed
predecessor, the knot vector and the corresponding B-splines are called "uniform".

Fabrice Salvaire's avatar
Fabrice Salvaire committed
Given a knot vector `T`, the associated B-spline basis functions, :math:`B_i^k(t)` are defined as:

.. t \in [t_i, t_{i+1}[

.. math::
    B_i^1(t) =
    \left\lbrace
    \begin{array}{l}
       1 \;\textrm{if}\; t_i \le t < t_{i+1} \\
       0 \;\textrm{otherwise}
    \end{array}
    \right.

.. math::
   \begin{split}
    B_i^k(t) &= \frac{t - t_i}{t_{i+k-1} - t_i} B_i^{k-1}(t)
              + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} B_{i+1}^{k-1}(t) \\
             &= w_i^{k-1}(t) B_i^{k-1}(t) + [1 - w_{i+1}^{k-1}(t)] B_{i+1}^{k-1}(t)
   \end{split}

where

.. math::
    w_i^k(t) =
    \left\lbrace
    \begin{array}{l}
       \frac{t - t_i}{t_{i+k} - t_i} \;\textrm{if}\; t_i < t_{i+k} \\
       0 \;\textrm{otherwise}
    \end{array}
    \right.

These equations have the following properties, for :math:`k > 1` and :math:`i = 0, 1, \ldots, n` :

* Positivity: :math:`B_i^k(t) > 0`, for :math:`t_i < t < t_{i+k}`
* Local Support: :math:`B_i^k(t) = 0`, for :math:`t_0 \le t \le t_i` and :math:`t_{i+k} \le t \le t_{n+k}`
* Partition of unity: :math:`\sum_{i=0}^n B_i^k(t)= 1`, for :math:`t \in [t_0, t_m]`
* Continuity: :math:`B_i^k(t)` as :math:`C^{k-2}` continuity at each simple knot

.. The B-spline contributes only in the range between the first and last of these knots and is zero
   elsewhere.

Fabrice Salvaire's avatar
Fabrice Salvaire committed
B-spline Curve
--------------

Fabrice Salvaire's avatar
Fabrice Salvaire committed
A B-spline curve of order `k` is defined as a linear combination of control points :math:`p_i` and
B-spline basis functions :math:`B_i^k(t)` given by
Fabrice Salvaire's avatar
Fabrice Salvaire committed

.. math::
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    S^k(t) = \sum_{i=0}^{n} p_i\; B_i^k(t) ,\quad n \ge k - 1,\; t \in [t_{k-1}, t_{n+1}]
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
In this context the control points are called De Boor points. The basis functions :math:`B_i^k(t)`
is defined on a knot vector
Fabrice Salvaire's avatar
Fabrice Salvaire committed

.. math::
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    T = (t_0, t_1, \ldots, t_{k-1}, t_k, t_{k+1}, \ldots, t_{n-1}, t_n, t_{n+1}, \ldots, t_{n+k})
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
where there are :math:`n+k+1` elements, i.e. the number of control points :math:`n+1` plus the order
of the curve `k`.  Each knot span :math:`t_i \le t \le t_{i+1}` is mapped onto a polynomial curve
between two successive joints :math:`S(t_i)` and :math:`S(t_{i+1})`.
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
Unlike Bézier curves, B-spline curves do not in general pass through the two end control points.
Increasing the multiplicity of a knot reduces the continuity of the curve at that knot.
Specifically, the curve is :math:`(k-p-1)` times continuously differentiable at a knot with
multiplicity :math:`p (\le k)`, and thus has :math:`C^{k-p-1}` continuity.  Therefore, the control
polygon will coincide with the curve at a knot of multiplicity :math:`k-1`, and a knot with
multiplicity `k` indicates :math:`C^{-1}` continuity, or a discontinuous curve.  Repeating the knots
at the end `k` times will force the endpoints to coincide with the control polygon.  Thus the first
and the last control points of a curve with a knot vector described by
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
.. math::
    \begin{eqnarray}
    T = (
    \underbrace{t_0, t_1, \ldots, t_{k-1},}_{\mbox{$k$ equal knots}}
    \quad
    \underbrace{t_k, t_{k+1}, \ldots, t_{n-1}, t_n,}_{\mbox{$n$-$k$+1 internal knots}}
    \quad
    \underbrace{t_{n+1}, \ldots, t_{n+k}}_{\mbox{$k$ equal knots}})
    \end{eqnarray}

coincide with the endpoints of the curve.  Such knot vectors and curves are known as *clamped*. In
other words, *clamped/unclamped* refers to whether both ends of the knot vector have multiplicity
equal to `k` or not.

**Local support property**: A single span of a B-spline curve is controlled only by `k` control
points, and any control point affects `k` spans.  Specifically, changing :math:`p_i` affects the
curve in the parameter range :math:`t_i < t < t_{i+k}` and the curve at a point where :math:`t_r < t
< t_{r+1}` is determined completely by the control points :math:`p_{r-(k-1)}, \ldots, p_r`.

**B-spline to Bézier property**: From the discussion of end points geometric property, it can be
seen that a Bézier curve of order `k` (degree :math:`k-1`) is a B-spline curve with no internal
knots and the end knots repeated `k` times.  The knot vector is thus
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
.. math::
 \begin{eqnarray}
    T = (
    \underbrace{t_0, t_1, \ldots, t_{k-1}}_{\mbox{$k$ equal knots}}
    ,\quad
    \underbrace{t_{n+1}, \ldots, t_{n+k}}_{\mbox{$k$ equal knots}}
    )
    \end{eqnarray}

where :math:`n+k+1 = 2k` or :math:`n = k-1`.

Algorithms for B-spline curves
------------------------------

Evaluation and subdivision algorithm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
A B-spline curve can be evaluated at a specific parameter value `t` using the de Boor algorithm,
which is a generalization of the de Casteljau algorithm.  The repeated substitution of the recursive
definition of the B-spline basis function into the previous definition and re-indexing leads to the
following de Boor algorithm:
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
..  math::
   S(t) = \sum_{i=0}^{n+j} p_i^j B_i^{k-j}(t) ,\quad j = 0, 1, \ldots, k-1
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
where
Fabrice Salvaire's avatar
Fabrice Salvaire committed

.. math::
Fabrice Salvaire's avatar
Fabrice Salvaire committed
   p_i^j = \Big[1 - w_i^j\Big] p_{i-1}^{j-1} + w_i^j p_i^{j-1}, \; j > 0
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
with
Fabrice Salvaire's avatar
Fabrice Salvaire committed

.. math::
Fabrice Salvaire's avatar
Fabrice Salvaire committed

  w_i^j = \frac{t - t_i}{t_{i+k-j} - t_i} \quad \textrm{and} \; p_j^0 = p_j

For :math:`j = k-1`, the B-spline basis function reduces to :math:`B_l^1` for :math:`t \in [t_l,
t_{l+1}]`, and :math:`p_l^{k-1}` coincides with the curve :math:`S(t) = p_l^{k-1}`.

The de Boor algorithm is a generalization of the de Casteljau algorithm. The de Boor algorithm also
permits the subdivision of the B-spline curve into two segments of the same order.

De Boor Algorithm
~~~~~~~~~~~~~~~~~

Let the index `l` define the knot interval that contains the position, :math:`t \in [t_l ,
t_{l+1}]`.  We can see in the recursion formula that only B-splines with :math:`i = l-K, \dots, l`
are non-zero for this knot interval, where :math:`K = k - 1` is the degree.  Thus, the sum is
reduced to:

.. math::
    S^k(t) = \sum _{i=l-K}^{l} p_{i} B_i^k(t)

The algorithm does not compute the B-spline functions :math:`B_i^k(t)` directly.  Instead it
evaluates :math:`S(t)` through an equivalent recursion formula.

Let :math:`d _i^r` be new control points with :math:`d_i^1 = p_i` for :math:`i = l-K, \dots, l`.
Fabrice Salvaire's avatar
Fabrice Salvaire committed

For :math:`r = 2, \dots, k` the following recursion is applied:
Fabrice Salvaire's avatar
Fabrice Salvaire committed

.. math::
    d_i^r = (1 - w_i^r) d_{i-1}^{r-1} + w_i^r d_i^{r-1} \quad i = l-K+r, \dots, l

    w_i^r = \frac{t - t_i}{t_{i+1+l-r} - t_{i}}

Once the iterations are complete, we have :math:`S^k(t) = d_l^k`.

.. , meaning that :math:`d_l^k` is the desired result.

De Boor's algorithm is more efficient than an explicit calculation of B-splines :math:`B_i^k(t)`
with the Cox-de Boor recursion formula, because it does not compute terms which are guaranteed to be
multiplied by zero.

..
    :math:`S(t) = p_j^k` for :math:`t \in [t_j , t_{j+1}[` for :math:`k \le j \le n` with the following relation:
    .. math::
        \begin{split}
        p_i^{r+1} &= \frac{t - t_i}{t_{i+k-r} - t} p_i^r + \frac{t_{i+k-r} - t_i}{t_{i+k-r} - t_i} p_{i-1}^r \\
                  &= w_i^{k-r}(t) p_i^r +  (1 - w_i^{k-r}(t)) p_{i-1}^r
        \end{split}

Knot insertion
~~~~~~~~~~~~~~

A knot can be inserted into a B-spline curve without changing the
geometry of the curve.  The new curve is identical to

.. math::
    \begin{array}{lcl}
    \sum_{i=0}^n p_i B_i^k(t) & \textrm{becomes} & \sum_{i=0}^{n+1} \bar{p}_i \bar B_i^k(t) \\
    \mbox{over}\; T = (t_0, t_1, \ldots, t_l, t_{l+1}, \ldots) & &
    \mbox{over}\; T = (t_0, t_1, \ldots, t_l, \bar t, t_{l+1}, \ldots) & &
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    \end{array}
Fabrice Salvaire's avatar
Fabrice Salvaire committed

when a new knot :math:`\bar t` is inserted between knots :math:`t_l` and :math:`t_{l+1}`.  The new
de Boor points are given by
Fabrice Salvaire's avatar
Fabrice Salvaire committed

.. math::
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    \bar{p}_i = (1 - w_i) p_{i-1} + w_i p_i
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
where
Fabrice Salvaire's avatar
Fabrice Salvaire committed

.. math::
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    w_i =
    \left\{ \begin{array}{ll}
    1 & i \le l-k+1 \\
    0 & i \ge l+1 \\
    \frac{\bar{t} - t_i}{t_{l+k-1} - t_i} & l-k+2 \le i \leq l
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    \end{array}
    \right.

Fabrice Salvaire's avatar
Fabrice Salvaire committed
The above algorithm is also known as **Boehm's algorithm**.  A more general (but also more complex)
insertion algorithm permitting insertion of several (possibly multiple) knots into a B-spline knot
vector, known as the Oslo algorithm, was developed by Cohen et al.
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
A B-spline curve is :math:`C^{\infty}` continuous in the interior of a span.  Within exact
arithmetic, inserting a knot does not change the curve, so it does not change the continuity.
However, if any of the control points are moved after knot insertion, the continuity at the knot
will become :math:`C^{k-p-1}`, where `p` is the multiplicity of the knot.
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
The B-spline curve can be subdivided into Bézier segments by knot insertion at each internal knot
until the multiplicity of each internal knot is equal to `k`.

References
----------

* Computer Graphics, Principle and Practice, Foley et al., Adison Wesley
* http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node15.html
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
# The DeBoor-Cox algorithm permits to evaluate recursively a B-Spline in a similar way to the De
# Casteljaud algorithm for Bézier curves.
#
# Given `k` the degree of the B-spline, `n + 1` control points :math:`p_0, \ldots, p_n`, and an
# increasing series of scalars :math:`t_0 \le t_1 \le \ldots \le t_m` with :math:`m = n + k + 1`,
# called knots.
#
# The number of points must respect the condition :math:`n + 1 \le k`, e.g. a B-spline of degree 3
# must have 4 control points.

Fabrice Salvaire's avatar
Fabrice Salvaire committed
####################################################################################################

__all__ = ['BSpline']

####################################################################################################

# from math import log, sqrt

import numpy as np

from .Bezier import QuadraticBezier2D, CubicBezier2D
from .Primitive import Primitive3P, Primitive4P, PrimitiveNP, Primitive2DMixin

####################################################################################################

class QuadraticUniformSpline2D(Primitive2DMixin, Primitive3P):

    """Class to implements 2D Quadratic Spline Curve."""

    BASIS = np.array((
        (1, -2,  1),
        (1,  2, -2),
        (0,  0,  1),
    ))

    INVERSE_BASIS = np.array((
        (-2,  1, -2),
        (-2, -3,  1),
        (-1, -1, -2),
    ))

    #######################################

    def __init__(self, p0, p1, p2):
        Primitive3P.__init__(self, p0, p1, p2)

    ##############################################

    def __repr__(self):
        return self.__class__.__name__ + '({0._p0}, {0._p1}, {0._p2})'.format(self)

    ##############################################

    def to_bezier(self):
        basis = np.dot(self.BASIS, QuadraticBezier2D.INVERSE_BASIS)
        points = np.dot(self.geometry_matrix, basis).transpose()
        return QuadraticBezier2D(*points)

    ##############################################

    def point_at_t(self, t):

        # Q(t) = (
        #          P0 *  (1-t)**3                      +
        #          P1 * (  3*t**3 - 6*t**2       + 4 ) +
        #          P2 * ( -3*t**3 + 3*t**2 + 3*t + 1 ) +
        #          P3 *      t**3
        #        ) / 6
        #
        #     = P0*(1-t)**3/6 + P1*(3*t**3 - 6*t**2 + 4)/6 + P2*(-3*t**3 + 3*t**2 + 3*t + 1)/6 + P3*t**3/6

        return (self._p0/6 + self._p1*2/3 + self._p2/6 +
                (-self._p0/2 + self._p2/2)*t +
                (self._p0/2 - self._p1 + self._p2/2)*t**2 +
                (-self._p0/6 + self._p1/2 - self._p2/2 + self._p3/6)*t**3)

####################################################################################################

class CubicUniformSpline2D(Primitive2DMixin, Primitive4P):

    """Class to implements 2D Cubic Spline Curve."""

    # T = (1 t t**2 t**3)
    # P = (Pi Pi+2 Pi+2 Pi+3)
    # Q(t) = T M Pt
    #      = P Mt Tt
    # Basis = Mt
    BASIS = np.array((
        (1, -3,  3, -1),
        (4,  0, -6,  3),
        (1,  3,  3, -3),
        (0,  0,  0,  1),
    )) / 6

    INVERSE_BASIS = np.array((
        (  1,    1,    1,     1),
        ( -1,    0,    1,     2),
        (2/3, -1/3,  2/3,  11/3),
        (  0,    0,    0,     6),
    ))

    #######################################

    def __init__(self, p0, p1, p2, p3):
        Primitive4P.__init__(self, p0, p1, p2, p3)

    ##############################################

    def __repr__(self):
        return self.__class__.__name__ + '({0._p0}, {0._p1}, {0._p2}, {0._p3})'.format(self)

    ##############################################

    def to_bezier(self):
        basis = np.dot(self.BASIS, CubicBezier2D.INVERSE_BASIS)
        points = np.dot(self.geometry_matrix, basis).transpose()
        if self._start:
            # list(self.points)[:2]
            points[:2] = self._p0, self._p1
        elif self._stop:
            # list(self.points)[-2:]
            points[-2:] = self._p2, self._p3
        return CubicBezier2D(*points)

    ##############################################

    def point_at_t(self, t):

        # Q(t) = (
        #          P0 *  (1-t)**3                      +
        #          P1 * (  3*t**3 - 6*t**2       + 4 ) +
        #          P2 * ( -3*t**3 + 3*t**2 + 3*t + 1 ) +
        #          P3 *      t**3
        #        ) / 6
        #
        #     = P0*(1-t)**3/6 + P1*(3*t**3 - 6*t**2 + 4)/6 + P2*(-3*t**3 + 3*t**2 + 3*t + 1)/6 + P3*t**3/6

        return (self._p0/6 + self._p1*2/3 + self._p2/6 +
                (-self._p0/2 + self._p2/2)*t +
                (self._p0/2 - self._p1 + self._p2/2)*t**2 +
                (-self._p0/6 + self._p1/2 - self._p2/2 + self._p3/6)*t**3)

####################################################################################################

class BSpline2D(Primitive2DMixin, PrimitiveNP):
    """Class to implement a 2D B-Spline curve.
Fabrice Salvaire's avatar
Fabrice Salvaire committed

    """

    ##############################################

    @staticmethod
    def uniform_knots(degree, number_of_points):
        order = degree + 1
        if number_of_points < order:
            raise ValueError('Inconsistent degree and number of points')
        knots = list(range(number_of_points - degree +1))
        return [0]*degree + knots + [knots[-1]]*degree

    ##############################################

    @classmethod
    def check_for_unifom_knots(cls, degree, number_of_points, knots):
        return np.array_equal(cls.uniform_knots(degree, number_of_points), knots)

    ##############################################

    def __init__(self, points, degree, knots=None):

        points = self.handle_points(points)
        PrimitiveNP.__init__(self, points)
Fabrice Salvaire's avatar
Fabrice Salvaire committed

        self._degree = int(degree)
        if knots is not None:
            self._knots = list(knots)
            if not np.all(np.diff(self._knots) >= 0):
                raise ValueError('Invalid knots {}'.format(knots))
            # Fixme: check_for_unifom_knots
            self._uniform = False # Fixme:
        else:
            self._knots = self.uniform_knots(self._degree, self.number_of_points)
            self._uniform = True
        # self._number_of_points = len(self._knots) - self._degree - 1
        # assert (self.number_of_points >= self.order and
        #         (len(self._coefficients) >= self._number_of_points))
Fabrice Salvaire's avatar
Fabrice Salvaire committed

    ##############################################

    @property
    def degree(self):
        return self._degree

    @property
    def order(self):
        return self._degree +1

    @property
    def uniform(self):
        return self._uniform

Fabrice Salvaire's avatar
Fabrice Salvaire committed
    @property
    def knots(self):
        return self._knots

    @property
    def start_knot(self):
        if self._uniform:
            return 0
        else:
            return self._knots[0]

    @property
    def end_knot(self):
        if self._uniform:
            return self.number_of_points - self._degree
        else:
            return self._knots[-1]

    @property
    def knot_iter(self):
        if self._uniform:
            return range(self.end_knot)
        else:
            return iter(self._knots)
Fabrice Salvaire's avatar
Fabrice Salvaire committed

    @property
    def number_of_spans(self):
        if self._uniform:
            return self.number_of_points - self._degree
        else:
            # multiplicity
            raise NotImplementedError

    ##############################################

    def span(self, t):
        if not(self.start_knot <= t <= self.end_knot):
            raise ValueError('Invalid t {}'.format(t))
        if self._uniform:
            return int(t) + self._degree # start padding
        else:
            for i, t_span in enumerate(self._knots):
                if t < t_span:
                    return i-1
Fabrice Salvaire's avatar
Fabrice Salvaire committed

    ##############################################

    def knot_multiplicity(self, knot):
        count = 0
        for t in self._knots:
            if t == knot:
                count += 1
            elif t > knot:
                break
        return count
Fabrice Salvaire's avatar
Fabrice Salvaire committed

    ##############################################

    def basis_function(self, i, k, t):

        """De Boor-Cox recursion formula"""
Fabrice Salvaire's avatar
Fabrice Salvaire committed

        if k == 0:
            return 1 if self._knots[i] <= t < self._knots[i+1] else 0

        ki = self._knots[i]
        kik = self._knots[i+k]
        if kik == ki:
            c1 = 0
        else:
            c1 = (t - ki)/(kik - ki) * self.basis_function(i, k-1, t)

        ki = self._knots[i+1]
        kik = self._knots[i+k+1]
        if kik == ki:
            c2 = 0
        else:
            c2 =  (kik - t)/(kik - ki) * self.basis_function(i+1, k-1, t)

        return c1 + c2

    ##############################################

    def _deboor(self, t):

        """Compute point at t using De Boor algorithm"""

        # l_minus_degree = int(t) # span index
        # l = l_minus_degree + self._degree # knot index
        l = self.span(t)
        l_minus_degree = l - self._degree

        knots = self._knots

        points = [self._points[j + l_minus_degree] for j in range(self.order)]
        for r in range(1, self.order):
            for j in range(self._degree, r-1, -1):
                k = j + l_minus_degree
                d = knots[j+1+l-r] - knots[k]
                if d == 0:
                    alpha = 0
                else:
                    alpha = (t - knots[k]) / d
                if alpha == 0:
                    point = points[j-1]
                elif alpha == 1:
                    point = points[j]
                else:
                    point = points[j-1] * (1 - alpha) + points[j] * alpha
                points[j] = point

        return points[self._degree]

    ##############################################

    def _naive_point_at_t(self, t):

        """Compute point at t using a naive algorithm"""

        basis = np.array([self.basis_function(i, self._degree, t)
                          for i in range(self.number_of_points)])
        points = self.point_array
        return self.__vector_cls__(np.dot(basis, points))

    ##############################################

    def point_at_t(self, t, naive=False):

        # Spline curve as a Bézier span at start and end
        if self._uniform:
            if t == 0:
                return self.start_point
            elif t == self.end_knot:
                # else computation fail
                return self.end_point

        if naive:
            return self._naive_point_at_t(t)
        else:
            return self._deboor(t)

    ##############################################

    def insert_knot(self, t):

        # http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/single-insertion.html

        # t lie in the [t_l, t_{l+1}[ span
        # this span is only affected by the control points: P_l, ..., P_{l-degree}
        #   (number of points = degree + 1 = order)

        degree = self._degree
        points = self._points
        knots = self._knots
        l = self.span(t)

        new_points = []
        for i in range(self.number_of_points +1):
            # compute w
            if i <= l - degree:
                w = 1 # same point
            elif i > l:
                w = 0 # previous point
            else: # blend previous and current point
                ti = knots[i]
                d = knots[i + degree] - ti
                if d > 0:
                    w = (t - ti) / d
                else:
                    w = 0

            if w == 0:
                point = points[i-1]
            elif w == 1:
                point = points[i]
            else:
                point = points[i-1] * (1 - w) + points[i] * w
            new_points.append(point)

        # l += degree
        knots = self._knots[:l+1] + [t] + self._knots[l+1:]

        return self.__class__(new_points, self._degree, knots)

    ##############################################

    def to_bezier_form(self, degree=None):

        if not self._uniform:
            raise ValueError('Must be uniform')

        if degree is None:
            degree = self._degree

        new_spline = self
        for t in range(1, self.end_knot):
            multiplicity = self.knot_multiplicity(t)
            for i in range(degree - multiplicity +1):
                new_spline = new_spline.insert_knot(t)

        return new_spline

    ##############################################

    def to_bezier(self):

        from . import Bezier

        if self._degree == 2:
            cls = Bezier.QuadraticBezier2D
        elif self._degree >= 3:
            cls = Bezier.CubicBezier2D
        else:
            not NotImplementedError

        # Fixme: degree > 3
        spline = self.to_bezier_form()

        bezier_curves = []
        order = spline.order
        for i in range(self.number_of_spans):
            i_inf = i * order
            i_sup = i_inf + order
            points = spline._points[i_inf:i_sup]
            bezier = cls(*points)
            bezier_curves.append(bezier)

        return bezier_curves