Newer
Older
Copyright 2014 James LeRoy getSurreal
https://github.com/getSurreal/XV_Lidar_Controller
http://www.getsurreal.com/arduino/xv_lidar_controller
See README for additional information
*/
#include <TimerThree.h> // used for ultrasonic PWM motor control
#include <PID.h>
struct EEPROM_Config
{
byte id;
int motor_pwm_pin;
double rpm_setpoint; // desired RPM
double pwm_max;
double pwm_min;
double Kp;
double Ki;
double Kd;
}
xv_config;
const byte EEPROM_ID = 0x99; // used to validate EEPROM initialized
double pwm_val = xv_config.pwm_min; // start slow
PID myPID(&motor_rpm, &pwm_val, &xv_config.rpm_setpoint,xv_config.Kp,xv_config.Ki,xv_config.Kd, DIRECT);
int inByte = 0; // incoming serial byte
unsigned char data_status = 0;
unsigned char data_4deg_index = 0;
unsigned char data_loop_index = 0;
unsigned char motor_rph_high_byte = 0;
unsigned char motor_rph_low_byte = 0;
int motor_rph = 0;
void setup() {
EEPROM_readAnything(0, xv_config);
if( xv_config.id != EEPROM_ID) { // verify EEPROM values have been initialized
initEEPROM();
}
pinMode(xv_config.motor_pwm_pin, OUTPUT);
Serial.begin(115200); // USB serial
Serial1.begin(115200); // XV LDS data
Timer3.initialize(30); // set PWM frequency to 32.768kHz
Timer3.pwm(xv_config.motor_pwm_pin, pwm_val); // replacement for analogWrite()
myPID.SetOutputLimits(xv_config.pwm_min,xv_config.pwm_max);
myPID.SetSampleTime(20);
myPID.SetMode(AUTOMATIC);
}
void loop() {
// read byte from LIDAR and retransmit to USB
if (Serial1.available() > 0) {
inByte = Serial1.read(); // get incoming byte:
Serial.print(inByte, BYTE); // retransmit
decodeData(inByte);
}
myPID.Compute();
if (pwm_val != pwm_last) {
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
pwm_last = pwm_val;
}
}
void decodeData(unsigned char inByte) {
switch (data_status) {
case 0: // no header
if (inByte == 0xFA) {
data_status = 1;
data_loop_index = 1;
}
break;
case 1: // find 2nd FA
if (data_loop_index == 22) {
if (inByte == 0xFA) {
data_status = 2;
data_loop_index = 1;
}
else { // if not FA search again
data_status = 0;
}
}
else {
data_loop_index++;
}
break;
case 2: // read data out
if (data_loop_index == 22) {
if (inByte == 0xFA) {
data_loop_index = 1;
}
else { // if not FA search again
data_status = 0;
}
}
else {
readData(inByte);
data_loop_index++;
}
break;
}
}
void readData(unsigned char inByte) {
switch (data_loop_index) {
case 1: // 4 degree index
data_4deg_index = inByte - 0xA0;
// Serial.print(data_4deg_index, HEX);
// Serial.print(": ");
break;
case 2: // speed in RPH low byte
motor_rph_low_byte = inByte;
break;
case 3: // speed in RPH high byte
motor_rph_high_byte = inByte;
motor_rph = (motor_rph_high_byte << 8) | motor_rph_low_byte;
motor_rpm = float( (motor_rph_high_byte << 8) | motor_rph_low_byte ) / 64.0;
#if DEBUG_MOTOR_RPM
Serial.print(motor_rph_low_byte, HEX);
Serial.println(motor_rph_high_byte, HEX);
Serial.print(motor_rpm);
Serial.print(" ");
Serial.println(pwm_val);
#endif
break;
default: // others do checksum
break;
}
}
void initEEPROM() {
xv_config.id = 0x99;
xv_config.motor_pwm_pin = 9; // pin connected N-Channel Mosfet
xv_config.rpm_setpoint = 300; // desired RPM
xv_config.pwm_max = 1023;
xv_config.pwm_min = 600;
xv_config.Kp = 1.0;
xv_config.Ki = 0.5;
xv_config.Kd = 0.00;
EEPROM_writeAnything(0, xv_config);
}