Newer
Older
/****************************************************************************
* Copyright (C) 2007-2009, 2011 Gregory Nutt. All rights reserved.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
*
* References:
* Microsoft FAT documentation
* Some good ideas were leveraged from the FAT implementation:
* 'Copyright (C) 2007, ChaN, all right reserved.'
* which has an unrestricted license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <stdint.h>
#include <stdbool.h>
#include <semaphore.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include <nuttx/fs.h>
#include <nuttx/fat.h>
#include "fs_internal.h"
#include "fs_fat32.h"
/****************************************************************************
* Definitions
****************************************************************************/
/****************************************************************************
* Private Types
****************************************************************************/
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/****************************************************************************
* Private Variables
****************************************************************************/
/****************************************************************************
* Public Variables
****************************************************************************/
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: fat_checkfsinfo
*
* Desciption: Read the FAT32 FSINFO sector
*
****************************************************************************/
static int fat_checkfsinfo(struct fat_mountpt_s *fs)
{
/* Verify that this is, indeed, an FSINFO sector */
if (FSI_GETLEADSIG(fs->fs_buffer) == 0x41615252 &&
FSI_GETSTRUCTSIG(fs->fs_buffer) == 0x61417272 &&
FSI_GETTRAILSIG(fs->fs_buffer) == BOOT_SIGNATURE32)
{
fs->fs_fsinextfree = FSI_GETFREECOUNT(fs->fs_buffer);
fs->fs_fsifreecount = FSI_GETNXTFREE(fs->fs_buffer);
return OK;
}
}
return -ENODEV;
}
/****************************************************************************
* Name: fat_checkbootrecord
*
* Desciption: Read a sector and verify that it is a a FAT boot record.
*
****************************************************************************/
static int fat_checkbootrecord(struct fat_mountpt_s *fs)
{
uint32_t ndatasectors;
uint32_t ntotalfatsects;
uint16_t rootdirsectors = 0;
bool notfat32 = false;
/* Verify the MBR signature at offset 510 in the sector (true even
* if the sector size is greater than 512. All FAT file systems have
* this signature. On a FAT32 volume, the RootEntCount , FatSz16, and
* FatSz32 values should always be zero. The FAT sector size should
* match the reported hardware sector size.
*/
if (MBR_GETSIGNATURE(fs->fs_buffer) != BOOT_SIGNATURE16 ||
MBR_GETBYTESPERSEC(fs->fs_buffer) != fs->fs_hwsectorsize)
{
fdbg("ERROR: Signature: %04x FS sectorsize: %d HW sectorsize: %d\n",
MBR_GETSIGNATURE(fs->fs_buffer), MBR_GETBYTESPERSEC(fs->fs_buffer),
fs->fs_hwsectorsize);
return -ENODEV;
}
/* Verify the FAT32 file system type. The determination of the file
* system type is based on the number of clusters on the volume: FAT12
* volume has <= FAT_MAXCLUST12 (4084) clusters, a FAT16 volume has <=
* FAT_MINCLUST16 (microsfoft says < 65,525) clusters, and any larger
* is FAT32.
*
* Get the number of 32-bit directory entries in root directory (zero
*/
fs->fs_rootentcnt = MBR_GETROOTENTCNT(fs->fs_buffer);
if (fs->fs_rootentcnt != 0)
notfat32 = true; /* Must be zero for FAT32 */
rootdirsectors = (32 * fs->fs_rootentcnt + fs->fs_hwsectorsize - 1) / fs->fs_hwsectorsize;
fs->fs_nfatsects = MBR_GETFATSZ16(fs->fs_buffer); /* Should be zero */
if (fs->fs_nfatsects)
notfat32 = true; /* Must be zero for FAT32 */
fs->fs_nfatsects = MBR_GETFATSZ32(fs->fs_buffer);
if (!fs->fs_nfatsects || fs->fs_nfatsects >= fs->fs_hwnsectors)
fdbg("ERROR: fs_nfatsects %d fs_hwnsectors: %d\n",
fs->fs_nfatsects, fs->fs_hwnsectors);
return -ENODEV;
}
/* Get the total number of sectors on the volume. */
fs->fs_fattotsec = MBR_GETTOTSEC16(fs->fs_buffer); /* Should be zero */
if (fs->fs_fattotsec)
{
notfat32 = true; /* Must be zero for FAT32 */
}
else
{
fs->fs_fattotsec = MBR_GETTOTSEC32(fs->fs_buffer);
}
if (!fs->fs_fattotsec || fs->fs_fattotsec > fs->fs_hwnsectors)
{
fdbg("ERROR: fs_fattotsec %d fs_hwnsectors: %d\n",
fs->fs_fattotsec, fs->fs_hwnsectors);
return -ENODEV;
}
/* Get the total number of reserved sectors */
fs->fs_fatresvdseccount = MBR_GETRESVDSECCOUNT(fs->fs_buffer);
if (fs->fs_fatresvdseccount > fs->fs_hwnsectors)
{
fdbg("ERROR: fs_fatresvdseccount %d fs_hwnsectors: %d\n",
fs->fs_fatresvdseccount, fs->fs_hwnsectors);
return -ENODEV;
}
/* Get the number of FATs. This is probably two but could have other values */
fs->fs_fatnumfats = MBR_GETNUMFATS(fs->fs_buffer);
ntotalfatsects = fs->fs_fatnumfats * fs->fs_nfatsects;
ndatasectors = fs->fs_fattotsec - fs->fs_fatresvdseccount - ntotalfatsects - rootdirsectors;
fdbg("ERROR: ndatasectors %d fs_hwnsectors: %d\n",
ndatasectors, fs->fs_hwnsectors);
return -ENODEV;
}
/* Get the sectors per cluster */
fs->fs_fatsecperclus = MBR_GETSECPERCLUS(fs->fs_buffer);
/* Calculate the number of clusters */
fs->fs_nclusters = ndatasectors / fs->fs_fatsecperclus;
/* Finally, the test: */
{
fs->fs_fsinfo = 0;
fs->fs_type = FSTYPE_FAT12;
}
{
fs->fs_fsinfo = 0;
fs->fs_type = FSTYPE_FAT16;
}
else if (!notfat32)
{
fs->fs_fsinfo = fs->fs_fatbase + MBR_GETFSINFO(fs->fs_buffer);
fs->fs_type = FSTYPE_FAT32;
fdbg("ERROR: notfat32: %d fs_nclusters: %d\n",
notfat32, fs->fs_nclusters);
return -ENODEV;
}
/* We have what appears to be a valid FAT filesystem! Save a few more things
* from the boot record that we will need later.
*/
fs->fs_fatbase += fs->fs_fatresvdseccount;
if (fs->fs_type == FSTYPE_FAT32)
{
fs->fs_rootbase = MBR_GETROOTCLUS(fs->fs_buffer);
}
else
{
fs->fs_rootbase = fs->fs_fatbase + ntotalfatsects;
fs->fs_database = fs->fs_fatbase + ntotalfatsects + fs->fs_rootentcnt / DIRSEC_NDIRS(fs);
fs->fs_fsifreecount = 0xffffffff;
return OK;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: fat_getuint16
****************************************************************************/
uint16_t fat_getuint16(uint8_t *ptr)
{
#ifdef CONFIG_ENDIAN_BIG
/* The bytes always have to be swapped if the target is big-endian */
return ((uint16_t)ptr[0] << 8) | ptr[1];
#else
/* Byte-by-byte transfer is still necessary if the address is un-aligned */
return ((uint16_t)ptr[1] << 8) | ptr[0];
#endif
}
/****************************************************************************
* Name: fat_getuint32
****************************************************************************/
uint32_t fat_getuint32(uint8_t *ptr)
{
#ifdef CONFIG_ENDIAN_BIG
/* The bytes always have to be swapped if the target is big-endian */
return ((uint32_t)fat_getuint16(&ptr[0]) << 16) | fat_getuint16(&ptr[2]);
#else
/* Byte-by-byte transfer is still necessary if the address is un-aligned */
return ((uint32_t)fat_getuint16(&ptr[2]) << 16) | fat_getuint16(&ptr[0]);
#endif
}
/****************************************************************************
* Name: fat_putuint16
****************************************************************************/
void fat_putuint16(uint8_t *ptr, uint16_t value16)
#ifdef CONFIG_ENDIAN_BIG
/* The bytes always have to be swapped if the target is big-endian */
ptr[0] = val[1];
ptr[1] = val[0];
#else
/* Byte-by-byte transfer is still necessary if the address is un-aligned */
ptr[0] = val[0];
ptr[1] = val[1];
#endif
}
/****************************************************************************
* Name: fat_putuint32
****************************************************************************/
void fat_putuint32(uint8_t *ptr, uint32_t value32)
uint16_t *val = (uint16_t*)&value32;
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#ifdef CONFIG_ENDIAN_BIG
/* The bytes always have to be swapped if the target is big-endian */
fat_putuint16(&ptr[0], val[2]);
fat_putuint16(&ptr[2], val[0]);
#else
/* Byte-by-byte transfer is still necessary if the address is un-aligned */
fat_putuint16(&ptr[0], val[0]);
fat_putuint16(&ptr[2], val[2]);
#endif
}
/****************************************************************************
* Name: fat_semtake
****************************************************************************/
void fat_semtake(struct fat_mountpt_s *fs)
{
/* Take the semaphore (perhaps waiting) */
while (sem_wait(&fs->fs_sem) != 0)
{
/* The only case that an error should occur here is if
* the wait was awakened by a signal.
*/
ASSERT(*get_errno_ptr() == EINTR);
}
}
/****************************************************************************
* Name: fat_semgive
****************************************************************************/
void fat_semgive(struct fat_mountpt_s *fs)
{
sem_post(&fs->fs_sem);
}
/****************************************************************************
* Name: fat_systime2fattime
*
* Desciption: Get the system time convert to a time and and date suitble
* for writing into the FAT FS.
*
* TIME in LS 16-bits:
* Bits 0:4 = 2 second count (0-29 representing 0-58 seconds)
* Bits 5-10 = minutes (0-59)
* Bits 11-15 = hours (0-23)
* DATE in MS 16-bits
* Bits 5:8 = Month of year (1-12)
* Bits 9:15 = Year from 1980 (0-127 representing 1980-2107)
*
****************************************************************************/
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/* Unless you have a hardware RTC or some other to get accurate time, then
* there is no reason to support FAT time.
*/
#ifdef CONFIG_FS_FATTIME
struct timespec ts;
struct tm tm;
int ret;
/* Get the current time in seconds and nanoseconds */
ret = clock_settime(CLOCK_REALTIME, &ts);
if (ret == OK)
{
/* Break done the seconds in date and time units */
if (gmtime_r((FAR const time_t *)&ts.tv_sec, &tm) != NULL)
{
/* FAT can only represent dates since 1980. struct tm can
* represent dates since 1900.
*/
if (tm.tm_year >= 80)
{
uint16_t fattime;
uint16_t fatdate;
fattime = (tm.tm_sec >> 1) & 0x001f; /* Bits 0-4: 2 second count (0-29) */
fattime |= (tm.tm_min << 5) & 0x07e0; /* Bits 5-10: minutes (0-59) */
fattime |= (tm.tm_hour << 11) & 0xf800; /* Bits 11-15: hours (0-23) */
fatdate = tm.tm_mday & 0x001f; /* Bits 0-4: Day of month (1-31) */
fatdate |= ((tm.tm_mon+1) << 5) & 0x01e0; /* Bits 5-8: Month of year (1-12) */
fatdate |= ((tm.tm_year-80) << 9) & 0xfe00; /* Bits 9-15: Year from 1980 */
return (uint32_t)fatdate << 16 | (uint32_t)fattime;
}
}
}
#endif
return 0;
}
/****************************************************************************
* Name: fat_fattime2systime
*
* Desciption: Convert FAT data and time to a system time_t
*
* 16-bit FAT time:
* Bits 0:4 = 2 second count (0-29 representing 0-58 seconds)
* Bits 5-10 = minutes (0-59)
* Bits 11-15 = hours (0-23)
* 16-bit FAT date:
* Bits 5:8 = Month of year (1-12)
* Bits 9:15 = Year from 1980 (0-127 representing 1980-2107)
*
****************************************************************************/
time_t fat_fattime2systime(uint16_t fattime, uint16_t fatdate)
/* Unless you have a hardware RTC or some other to get accurate time, then
* there is no reason to support FAT time.
*/
#ifdef CONFIG_FS_FATTIME
struct tm tm;
unsigned int tmp;
/* Break out the date and time */
tm.tm_sec = (fatdate & 0x001f) << 1; /* Bits 0-4: 2 second count (0-29) */
tm.tm_min = (fatdate & 0x07e0) >> 5; /* Bits 5-10: minutes (0-59) */
tm.tm_hour = (fatdate & 0xf800) >> 11; /* Bits 11-15: hours (0-23) */
tm.tm_mday = (fatdate & 0x001f); /* Bits 0-4: Day of month (1-31) */
tmp = ((fatdate & 0x01e0) >> 5); /* Bits 5-8: Month of year (1-12) */
tm.tm_mon = tmp > 0 ? tmp-1 : 0;
tm.tm_year = ((fatdate & 0xfe00) >> 9) + 80; /* Bits 9-15: Year from 1980 */
/* Then convert the broken out time into seconds since the epoch */
return mktime(&tm);
#else
}
/****************************************************************************
* Name: fat_mount
*
* Desciption: This function is called only when the mountpoint is first
* established. It initializes the mountpoint structure and verifies
* that a valid FAT32 filesystem is provided by the block driver.
*
* The caller should hold the mountpoint semaphore
*
****************************************************************************/
int fat_mount(struct fat_mountpt_s *fs, bool writeable)
{
FAR struct inode *inode;
struct geometry geo;
int ret;
/* Assume that the mount is successful */
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/* Check if there is media available */
inode = fs->fs_blkdriver;
if (!inode || !inode->u.i_bops || !inode->u.i_bops->geometry ||
inode->u.i_bops->geometry(inode, &geo) != OK || !geo.geo_available)
{
ret = -ENODEV;
goto errout;
}
/* Make sure that that the media is write-able (if write access is needed) */
if (writeable && !geo.geo_writeenabled)
{
ret = -EACCES;
goto errout;
}
/* Save the hardware geometry */
fs->fs_hwsectorsize = geo.geo_sectorsize;
fs->fs_hwnsectors = geo.geo_nsectors;
/* Allocate a buffer to hold one hardware sector */
fs->fs_buffer = (uint8_t*)kmalloc(fs->fs_hwsectorsize);
if (!fs->fs_buffer)
{
ret = -ENOMEM;
goto errout;
}
/* Search FAT boot record on the drive. First check at sector zero. This
* could be either the boot record or a partition that refers to the boot
* record.
*
* First read sector zero. This will be the first access to the drive and a
* likely failure point.
*/
fs->fs_fatbase = 0;
ret = fat_hwread(fs, fs->fs_buffer, 0, 1);
if (ret < 0)
{
goto errout_with_buffer;
}
ret = fat_checkbootrecord(fs);
if (ret != OK)
{
/* The contents of sector 0 is not a boot record. It could be a
* partition, however. Assume it is a partition and get the offset
* into the partition table. This table is at offset MBR_TABLE and is
* indexed by 16x the partition number.
int i;
for (i = 0; i < 4; i++)
{
/* Check if the partition exists and, if so, get the bootsector for that
* partition and see if we can find the boot record there.
*/
uint8_t part = PART_GETTYPE(i, fs->fs_buffer);
fvdbg("Partition %d, offset %d, type %d\n", i, PART_ENTRY(i), part);
if (part == 0)
{
fvdbg("No partition %d\n", i);
continue;
}
/* There appears to be a partition, get the sector number of the
* partition (LBA)
*/
fs->fs_fatbase = PART_GETSTARTSECTOR(i, fs->fs_buffer);
/* Read the new candidate boot sector */
ret = fat_hwread(fs, fs->fs_buffer, fs->fs_fatbase, 1);
if (ret < 0)
{
/* Failed to read the sector */
goto errout_with_buffer;
}
/* Check if this is a boot record */
ret = fat_checkbootrecord(fs);
if (ret == OK)
{
/* Break out of the loop if a valid boot record is found */
fvdbg("MBR found in partition %d\n", i);
break;
}
/* Re-read sector 0 so that we can check the next partition */
fvdbg("Partition %d is not an MBR\n", i);
ret = fat_hwread(fs, fs->fs_buffer, 0, 1);
if (ret < 0)
{
goto errout_with_buffer;
}
}
if (i > 3)
{
fdbg("No valid MBR\n");
goto errout_with_buffer;
}
}
/* We have what appears to be a valid FAT filesystem! Now read the
* FSINFO sector (FAT32 only)
*/
if (fs->fs_type == FSTYPE_FAT32)
{
ret = fat_checkfsinfo(fs);
if (ret != OK)
{
}
}
/* We did it! */
fdbg("FAT%d:\n", fs->fs_type == 0 ? 12 : fs->fs_type == 1 ? 16 : 32);
fdbg("\tHW sector size: %d\n", fs->fs_hwsectorsize);
fdbg("\t sectors: %d\n", fs->fs_hwnsectors);
fdbg("\tFAT reserved: %d\n", fs->fs_fatresvdseccount);
fdbg("\t sectors: %d\n", fs->fs_fattotsec);
fdbg("\t start sector: %d\n", fs->fs_fatbase);
fdbg("\t root sector: %d\n", fs->fs_rootbase);
fdbg("\t root entries: %d\n", fs->fs_rootentcnt);
fdbg("\t data sector: %d\n", fs->fs_database);
fdbg("\t FSINFO sector: %d\n", fs->fs_fsinfo);
fdbg("\t Num FATs: %d\n", fs->fs_fatnumfats);
fdbg("\t FAT sectors: %d\n", fs->fs_nfatsects);
fdbg("\t sectors/cluster: %d\n", fs->fs_fatsecperclus);
fdbg("\t max clusters: %d\n", fs->fs_nclusters);
fdbg("\tFSI free count %d\n", fs->fs_fsifreecount);
fdbg("\t next free %d\n", fs->fs_fsinextfree);
return OK;
errout_with_buffer:
return ret;
}
/****************************************************************************
* Name: fat_checkmount
*
* Desciption: Check if the mountpoint is still valid.
*
* The caller should hold the mountpoint semaphore
*
****************************************************************************/
int fat_checkmount(struct fat_mountpt_s *fs)
{
/* If the fs_mounted flag is false, then we have already handled the loss
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
* of the mount.
*/
if (fs && fs->fs_mounted)
{
struct fat_file_s *file;
/* We still think the mount is healthy. Check an see if this is
* still the case
*/
if (fs->fs_blkdriver)
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->geometry)
{
struct geometry geo;
int errcode = inode->u.i_bops->geometry(inode, &geo);
if (errcode == OK && geo.geo_available && !geo.geo_mediachanged)
{
return OK;
}
}
}
/* If we get here, the mount is NOT healthy */
/* Make sure that this is flagged in every opened file */
for (file = fs->fs_head; file; file = file->ff_next)
{
}
}
return -ENODEV;
}
/****************************************************************************
* Name: fat_hwread
*
* Desciption: Read the specified sector into the sector buffer
*
****************************************************************************/
int fat_hwread(struct fat_mountpt_s *fs, uint8_t *buffer, off_t sector,
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
unsigned int nsectors)
{
int ret = -ENODEV;
if (fs && fs->fs_blkdriver )
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->read)
{
ssize_t nSectorsRead = inode->u.i_bops->read(inode, buffer,
sector, nsectors);
if (nSectorsRead == nsectors)
{
ret = OK;
}
else if (nSectorsRead < 0)
{
ret = nSectorsRead;
}
}
}
return ret;
}
/****************************************************************************
* Name: fat_hwwrite
*
* Desciption: Write the sector buffer to the specified sector
*
****************************************************************************/
int fat_hwwrite(struct fat_mountpt_s *fs, uint8_t *buffer, off_t sector,
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
unsigned int nsectors)
{
int ret = -ENODEV;
if (fs && fs->fs_blkdriver )
{
struct inode *inode = fs->fs_blkdriver;
if (inode && inode->u.i_bops && inode->u.i_bops->write)
{
ssize_t nSectorsWritten =
inode->u.i_bops->write(inode, buffer, sector, nsectors);
if (nSectorsWritten == nsectors)
{
ret = OK;
}
else if (nSectorsWritten < 0)
{
ret = nSectorsWritten;
}
}
}
return ret;
}
/****************************************************************************
* Name: fat_cluster2sector
*
* Desciption: Convert a cluster number to a start sector number
*
****************************************************************************/
off_t fat_cluster2sector(struct fat_mountpt_s *fs, uint32_t cluster )
{
cluster -= 2;
if (cluster >= fs->fs_nclusters - 2)
{
return -EINVAL;
}
return cluster * fs->fs_fatsecperclus + fs->fs_database;
}
/****************************************************************************
* Name: fat_getcluster
*
*
* Return: <0: error, 0:cluster unassigned, >=0: start sector of cluster
*
****************************************************************************/
off_t fat_getcluster(struct fat_mountpt_s *fs, uint32_t clusterno)
{
/* Verify that the cluster number is within range */
if (clusterno >= 2 && clusterno < fs->fs_nclusters)
{
/* Okay.. Read the next cluster from the FAT. The way we will do
* this depends on the type of FAT filesystm we are dealing with.
*/
switch (fs->fs_type)
{
case FSTYPE_FAT12 :
{
off_t fatsector;
unsigned int fatindex;
/* FAT12 is more complex because it has 12-bits (1.5 bytes)
* per FAT entry. Get the offset to the first byte:
*/
fatoffset = (clusterno * 3) / 2;
fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
/* Read the sector at this offset */
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
/* Get the first, LS byte of the cluster from the FAT */
fatindex = fatoffset & SEC_NDXMASK(fs);
cluster = fs->fs_buffer[fatindex];
/* With FAT12, the second byte of the cluster number may lie in
* a different sector than the first byte.
*/
fatindex++;
if (fatindex >= fs->fs_hwsectorsize)
{
fatsector++;
fatindex = 0;
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
}
/* Get the second, MS byte of the cluster for 16-bits. The
* does not depend on the endian-ness of the target, but only
* on the fact that the byte stream is little-endian.
*/
/* Now, pick out the correct 12 bit cluster start sector value */
if ((clusterno & 1) != 0)
{
/* Odd.. take the MS 12-bits */
}
case FSTYPE_FAT16 :
{
unsigned int fatoffset = 2 * clusterno;
off_t fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
return FAT_GETFAT16(fs->fs_buffer, fatindex);
}
case FSTYPE_FAT32 :
{
unsigned int fatoffset = 4 * clusterno;
off_t fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
}
default:
break;
}
}
/* There is no cluster information, or an error occured */
return (off_t)-EINVAL;
}
/****************************************************************************
* Name: fat_putcluster
*
*
****************************************************************************/
int fat_putcluster(struct fat_mountpt_s *fs, uint32_t clusterno, off_t nextcluster)
{
/* Verify that the cluster number is within range. Zero erases the cluster. */
if (clusterno == 0 || (clusterno >= 2 && clusterno < fs->fs_nclusters))
{
/* Okay.. Write the next cluster into the FAT. The way we will do
* this depends on the type of FAT filesystm we are dealing with.
*/
switch (fs->fs_type)
{
case FSTYPE_FAT12 :
{
off_t fatsector;
/* FAT12 is more complex because it has 12-bits (1.5 bytes)
* per FAT entry. Get the offset to the first byte:
*/
fatoffset = (clusterno * 3) / 2;
fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
/* Make sure that the sector at this offset is in the cache */
if (fat_fscacheread(fs, fatsector)< 0)
{
/* Read error */
/* Get the LS byte first handling the 12-bit alignment within
* the 16-bits
*/
fatindex = fatoffset & SEC_NDXMASK(fs);
if ((clusterno & 1) != 0)
{
/* Save the LS four bits of the next cluster */
value = (fs->fs_buffer[fatindex] & 0x0f) | nextcluster << 4;
/* Save the LS eight bits of the next cluster */
fs->fs_buffer[fatindex] = value;
/* With FAT12, the second byte of the cluster number may lie in
* a different sector than the first byte.
*/
fatindex++;
if (fatindex >= fs->fs_hwsectorsize)
{
/* Read the next sector */
fatsector++;
fatindex = 0;
/* Set the dirty flag to make sure the sector that we
* just modified is written out.
*/
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
break;
}
}
/* Output the MS byte first handling the 12-bit alignment within
* the 16-bits
*/
if ((clusterno & 1) != 0)
{
/* Save the MS eight bits of the next cluster */
value = (uint8_t)(nextcluster >> 4);
/* Save the MS four bits of the next cluster */
value = (fs->fs_buffer[fatindex] & 0xf0) | ((nextcluster >> 8) & 0x0f);
fs->fs_buffer[fatindex] = value;
}
break;
case FSTYPE_FAT16 :
{
unsigned int fatoffset = 2 * clusterno;
off_t fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
FAT_PUTFAT16(fs->fs_buffer, fatindex, nextcluster & 0xffff);
}
break;
case FSTYPE_FAT32 :
{
unsigned int fatoffset = 4 * clusterno;
off_t fatsector = fs->fs_fatbase + SEC_NSECTORS(fs, fatoffset);
unsigned int fatindex = fatoffset & SEC_NDXMASK(fs);
if (fat_fscacheread(fs, fatsector) < 0)
{
/* Read error */
FAT_PUTFAT32(fs->fs_buffer, fatindex, nextcluster & 0x0fffffff);
}
break;
default:
return -EINVAL;
}
/* Mark the modified sector as "dirty" and return success */
return OK;
}
return -EINVAL;
}
/****************************************************************************
* Name: fat_removechain
*
* Desciption: Remove an entire chain of clusters, starting with 'cluster'
*
****************************************************************************/
int fat_removechain(struct fat_mountpt_s *fs, uint32_t cluster)
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
int ret;
/* Loop while there are clusters in the chain */
while (cluster >= 2 && cluster < fs->fs_nclusters)
{
/* Get the next cluster after the current one */
nextcluster = fat_getcluster(fs, cluster);
if (nextcluster < 0)
{
/* Error! */
return nextcluster;
}
/* Then nullify current cluster -- removing it from the chain */
ret = fat_putcluster(fs, cluster, 0);
if (ret < 0)
{
return ret;
}
/* Update FSINFINFO data */
if (fs->fs_fsifreecount != 0xffffffff)
{
fs->fs_fsifreecount++;
fs->fs_fsidirty = 1;
}
/* Then set up to remove the next cluster */
cluster = nextcluster;
}
return OK;
}
/****************************************************************************
* Name: fat_extendchain
*
* Desciption: Add a new cluster to the chain following cluster (if cluster
* is non-NULL). if cluster is zero, then a new chain is created.
*
* Return: <0:error, 0: no free cluster, >=2: new cluster number
*
****************************************************************************/
int32_t fat_extendchain(struct fat_mountpt_s *fs, uint32_t cluster)
off_t startsector;
uint32_t newcluster;
uint32_t startcluster;
int ret;
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
/* The special value 0 is used when the new chain should start */
if (cluster == 0)
{
/* The FSINFO NextFree entry should be a good starting point
* in the search for a new cluster
*/
startcluster = fs->fs_fsinextfree;
if (startcluster == 0 || startcluster >= fs->fs_nclusters)
{
/* But it is bad.. we have to start at the beginning */
startcluster = 1;
}
}
else
{
/* We are extending an existing chain. Verify that this
* is a valid cluster by examining its start sector.
*/
startsector = fat_getcluster(fs, cluster);
if (startsector < 0)
{
/* An error occurred, return the error value */
return startsector;
}
else if (startsector < 2)
{
/* Oops.. this cluster does not exist. */
return 0;
}
else if (startsector < fs->fs_nclusters)
{
/* It is already followed by next cluster */
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
return startsector;
}
/* Okay.. it checks out */
startcluster = cluster;
}
/* Loop until (1) we discover that there are not free clusters
* (return 0), an errors occurs (return -errno), or (3) we find
* the next cluster (return the new cluster number).
*/
newcluster = startcluster;
for (;;)
{
/* Examine the next cluster in the FAT */
newcluster++;
if (newcluster >= fs->fs_nclusters)
{
/* If we hit the end of the available clusters, then
* wrap back to the beginning because we might have
* started at a non-optimal place. But don't continue
* past the start cluster.
*/
newcluster = 2;
if (newcluster > startcluster)
{
/* We are back past the starting cluster, then there
* is no free cluster.
*/
return 0;
}
}
/* We have a candidate cluster. Check if the cluster number is
* mapped to a group of sectors.
*/
startsector = fat_getcluster(fs, newcluster);
if (startsector == 0)
{
/* Found have found a free cluster break out*/
break;
}
else if (startsector < 0)
{
/* Some error occurred, return the error number */
return startsector;
}
/* We wrap all the back to the starting cluster? If so, then
* there are no free clusters.
*/
if (newcluster == startcluster)
{
return 0;
}
}
/* We get here only if we break out with an available cluster
* number in 'newcluster' Now mark that cluster as in-use.
*/
ret = fat_putcluster(fs, newcluster, 0x0fffffff);
if (ret < 0)
{
/* An error occurred */
return ret;
}
/* And link if to the start cluster (if any)*/
if (cluster)
{
/* There is a start cluster -- link it */
ret = fat_putcluster(fs, cluster, newcluster);
if (ret < 0)
{
return ret;
}
}
/* And update the FINSINFO for the next time we have to search */
fs->fs_fsinextfree = newcluster;
if (fs->fs_fsifreecount != 0xffffffff)
{
fs->fs_fsifreecount--;
fs->fs_fsidirty = 1;
}
/* Return then number of the new cluster that was added to the chain */
return newcluster;
}
/****************************************************************************
* Name: fat_nextdirentry
*
* Desciption: Read the next directory entry from the sector in cache,
* reading the next sector(s) in the cluster as necessary. This function
* must return -ENOSPC if if fails because there are no further entries
* available in the directory.
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
*
****************************************************************************/
int fat_nextdirentry(struct fat_mountpt_s *fs, struct fs_fatdir_s *dir)
{
unsigned int cluster;
unsigned int ndx;
/* Increment the index to the next 32-byte directory entry */
ndx = dir->fd_index + 1;
/* Check if all of the directory entries in this sectory have
* been examined.
*/
if ((ndx & (DIRSEC_NDIRS(fs)-1)) == 0)
{
/* Yes, then we will have to read the next sector */
dir->fd_currsector++;
/* For FAT12/16, the root directory is a group of sectors relative
* to the first sector of the fat volume.
*/
if (!dir->fd_currcluster)
{
/* For FAT12/16, the boot record tells us number of 32-bit directories
* that are contained in the root directory. This should correspond to
* an even number of sectors.
*/
if (ndx >= fs->fs_rootentcnt)
{
/* When we index past this count, we have examined all of the entries in
* the root directory.
*/
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
}
}
else
{
/* Not a FAT12/16 root directory, check if we have examined the entire
* cluster comprising the directory.
*
* The current sector within the cluster is the entry number divided
* byte the number of entries per sector
*/
int sector = ndx / DIRSEC_NDIRS(fs);
/* We are finished with the cluster when the last sector of the cluster
* has been examined.
*/
if ((sector & (fs->fs_fatsecperclus-1)) == 0)
{
/* Get next cluster */
cluster = fat_getcluster(fs, dir->fd_currcluster);
/* Check if a valid cluster was obtained. */
if (cluster < 2 || cluster >= fs->fs_nclusters)
{
/* No, we have probably reached the end of the cluster list */
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
}
/* Initialize for new cluster */
dir->fd_currcluster = cluster;
dir->fd_currsector = fat_cluster2sector(fs, cluster);
}
}
}
/* Save the new index into dir->fd_currsector */
dir->fd_index = ndx;
return OK;
}
/****************************************************************************
* Name: fat_dirtruncate
*
* Desciption: Truncate an existing file to zero length
*
* Assumptions: The caller holds mountpoint semaphore, fs_buffer holds
* the directory entry, the directory entry sector (fd_sector) is
* currently in the sector cache.
*
****************************************************************************/
int fat_dirtruncate(struct fat_mountpt_s *fs, struct fat_dirinfo_s *dirinfo)
{
unsigned int startcluster;
uint8_t *direntry;
off_t savesector;
int ret;
/* Get start cluster of the file to truncate */
direntry = &fs->fs_buffer[dirinfo->fd_seq.ds_offset];
((uint32_t)DIR_GETFSTCLUSTHI(direntry) << 16) |
DIR_GETFSTCLUSTLO(direntry);
/* Clear the cluster start value in the directory and set the file size
* to zero. This makes the file look empty but also have to dispose of
* all of the clusters in the chain.
*/
DIR_PUTFSTCLUSTHI(direntry, 0);
DIR_PUTFSTCLUSTLO(direntry, 0);
DIR_PUTFILESIZE(direntry, 0);
/* Set the ARCHIVE attribute and update the write time */
DIR_PUTATTRIBUTES(direntry, FATATTR_ARCHIVE);
DIR_PUTWRTTIME(direntry, writetime & 0xffff);
DIR_PUTWRTDATE(direntry, writetime > 16);
/* This sector needs to be written back to disk eventually */
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
/* Now remove the entire cluster chain comprising the file */
savesector = fs->fs_currentsector;
ret = fat_removechain(fs, startcluster);
if (ret < 0)
{
return ret;
}
/* Setup FSINFO to resuse this cluster next */
fs->fs_fsinextfree = startcluster - 1;
/* Make sure that the directory is still in the cache */
return fat_fscacheread(fs, savesector);
}
/****************************************************************************
* Name: fat_fscacheflush
*
* Desciption: Flush any dirty sector if fs_buffer as necessary
*
****************************************************************************/
int fat_fscacheflush(struct fat_mountpt_s *fs)
{
int ret;
/* Check if the fs_buffer is dirty. In this case, we will write back the
* contents of fs_buffer.
*/
if (fs->fs_dirty)
/* Write the dirty sector */
ret = fat_hwwrite(fs, fs->fs_buffer, fs->fs_currentsector, 1);
if (ret < 0)
if (fs->fs_currentsector >= fs->fs_fatbase &&
fs->fs_currentsector < fs->fs_fatbase + fs->fs_nfatsects)
{
/* Yes, then make the change in the FAT copy as well */
int i;
for (i = fs->fs_fatnumfats; i >= 2; i--)
fs->fs_currentsector += fs->fs_nfatsects;
ret = fat_hwwrite(fs, fs->fs_buffer, fs->fs_currentsector, 1);
if (ret < 0)
return OK;
}
/****************************************************************************
* Name: fat_fscacheread
*
* Desciption: Read the specified sector into the sector cache, flushing any
* existing dirty sectors as necessary.
*
****************************************************************************/
int fat_fscacheread(struct fat_mountpt_s *fs, off_t sector)
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
{
int ret;
/* fs->fs_currentsector holds the current sector that is buffered in
* fs->fs_buffer. If the requested sector is the same as this sector, then
* we do nothing. Otherwise, we will have to read the new sector.
*/
if (fs->fs_currentsector != sector)
{
/* We will need to read the new sector. First, flush the cached
* sector if it is dirty.
*/
ret = fat_fscacheflush(fs);
if (ret < 0)
{
return ret;
}
/* Then read the specified sector into the cache */
ret = fat_hwread(fs, fs->fs_buffer, sector, 1);
if (ret < 0)
{
return ret;
}
/* Update the cached sector number */
fs->fs_currentsector = sector;
}
return OK;
}
/****************************************************************************
* Name: fat_ffcacheflush
*
* Desciption: Flush any dirty sectors as necessary
*
****************************************************************************/
int fat_ffcacheflush(struct fat_mountpt_s *fs, struct fat_file_s *ff)
{
int ret;
/* Check if the ff_buffer is dirty. In this case, we will write back the
* contents of ff_buffer.
*/
if (ff->ff_cachesector &&
ff->ff_bflags && (FFBUFF_DIRTY|FFBUFF_VALID) == (FFBUFF_DIRTY|FFBUFF_VALID))
{
return OK;
}
/****************************************************************************
* Name: fat_ffcacheread
*
* Desciption: Read the specified sector into the sector cache, flushing any
* existing dirty sectors as necessary.
*
****************************************************************************/
int fat_ffcacheread(struct fat_mountpt_s *fs, struct fat_file_s *ff, off_t sector)
* ff->ff_buffer. If the requested sector is the same as this sector, then
* we do nothing. Otherwise, we will have to read the new sector.
*/
if (ff->ff_cachesector != sector || (ff->ff_bflags & FFBUFF_VALID) == 0)
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
{
/* We will need to read the new sector. First, flush the cached
* sector if it is dirty.
*/
ret = fat_ffcacheflush(fs, ff);
if (ret < 0)
{
return ret;
}
/* Then read the specified sector into the cache */
ret = fat_hwread(fs, ff->ff_buffer, sector, 1);
if (ret < 0)
{
return ret;
}
/* Update the cached sector number */
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
ff->ff_bflags |= FFBUFF_VALID;
}
return OK;
}
/****************************************************************************
* Name: fat_ffcacheread
*
* Desciption: Invalidate the current file buffer contents
*
****************************************************************************/
int fat_ffcacheinvalidate(struct fat_mountpt_s *fs, struct fat_file_s *ff)
{
int ret;
/* Is there anything valid in the buffer now? */
if ((ff->ff_bflags & FFBUFF_VALID) != 0)
{
/* We will invalidate the buffered sector */
ret = fat_ffcacheflush(fs, ff);
if (ret < 0)
{
return ret;
}
/* Then discard the current cache contents */
ff->ff_bflags &= ~FFBUFF_VALID;
ff->ff_cachesector = 0;
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
}
return OK;
}
/****************************************************************************
* Name: fat_updatefsinfo
*
* Desciption: Flush evertyhing buffered for the mountpoint and update
* the FSINFO sector, if appropriate
*
****************************************************************************/
int fat_updatefsinfo(struct fat_mountpt_s *fs)
{
int ret;
/* Flush the fs_buffer if it is dirty */
ret = fat_fscacheflush(fs);
if (ret == OK)
{
/* The FSINFO sector only has to be update for the case of a FAT32 file
* system. Check if the file system type.. If this is a FAT32 file
* system then the fs_fsidirty flag will indicate if the FSINFO sector
* needs to be re-written.
*/
if (fs->fs_type == FSTYPE_FAT32 && fs->fs_fsidirty)
{
/* Create an image of the FSINFO sector in the fs_buffer */
memset(fs->fs_buffer, 0, fs->fs_hwsectorsize);
FSI_PUTLEADSIG(fs->fs_buffer, 0x41615252);
FSI_PUTSTRUCTSIG(fs->fs_buffer, 0x61417272);
FSI_PUTFREECOUNT(fs->fs_buffer, fs->fs_fsifreecount);
FSI_PUTNXTFREE(fs->fs_buffer, fs->fs_fsinextfree);
/* Then flush this to disk */
fs->fs_currentsector = fs->fs_fsinfo;
ret = fat_fscacheflush(fs);
/* No longer dirty */
}
}
return ret;
}
/****************************************************************************
* Name: fat_nfreeclusters
*
* Desciption: Get the number of free clusters
*
****************************************************************************/
int fat_nfreeclusters(struct fat_mountpt_s *fs, off_t *pfreeclusters)
/* If number of the first free cluster is valid, then just return that value. */
if (fs->fs_fsifreecount <= fs->fs_nclusters - 2)
{
*pfreeclusters = fs->fs_fsifreecount;
return OK;
}
/* Otherwise, we will have to count the number of free clusters */
nfreeclusters = 0;
if (fs->fs_type == FSTYPE_FAT12)
{
off_t sector;
/* Examine every cluster in the fat */
for (sector = 2; sector < fs->fs_nclusters; sector++)
{
/* If the cluster is unassigned, then increment the count of free clusters */
if ((uint16_t)fat_getcluster(fs, sector) == 0)
{
nfreeclusters++;
}
}
}
else
{
unsigned int cluster;
off_t fatsector;
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
unsigned int offset;
int ret;
fatsector = fs->fs_fatbase;
offset = fs->fs_hwsectorsize;
/* Examine each cluster in the fat */
for (cluster = fs->fs_nclusters; cluster > 0; cluster--)
{
/* If we are starting a new sector, then read the new sector in fs_buffer */
if (offset >= fs->fs_hwsectorsize)
{
ret = fat_fscacheread(fs, fatsector++);
if (ret < 0)
{
return ret;
}
/* Reset the offset to the next FAT entry.
* Increment the sector number to read next time around.
*/
offset = 0;
fatsector++;
}
/* FAT16 and FAT32 differ only on the size of each cluster start
* sector number in the FAT.
*/
if (fs->fs_type == FSTYPE_FAT16)
{
if (FAT_GETFAT16(fs->fs_buffer, offset) == 0)
{
nfreeclusters++;
}
offset += 2;
}
else
{
if (FAT_GETFAT32(fs->fs_buffer, offset) == 0)
{
nfreeclusters++;
}
offset += 4;
}
}
}
fs->fs_fsifreecount = nfreeclusters;
if (fs->fs_type == FSTYPE_FAT32)
{
}
*pfreeclusters = nfreeclusters;
return OK;
}
/****************************************************************************
* Name: fat_nfreeclusters
*
* Desciption:
* Given the file position, set the correct current sector to access.
*
****************************************************************************/
int fat_currentsector(struct fat_mountpt_s *fs, struct fat_file_s *ff,
off_t position)
{
int sectoroffset;
if (position <= ff->ff_size )
{
/* sectoroffset is the sector number offset into the current cluster */
sectoroffset = SEC_NSECTORS(fs, position) & CLUS_NDXMASK(fs);
/* The current cluster is the first sector of the cluster plus
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
* the sector offset
*/
ff->ff_currentsector = fat_cluster2sector(fs, ff->ff_currentcluster)
+ sectoroffset;
/* The remainder is the number of sectors left in the cluster to be
* read/written
*/
ff->ff_sectorsincluster = fs->fs_fatsecperclus - sectoroffset;
fvdbg("position=%d currentsector=%d sectorsincluster=%d\n",
position, ff->ff_currentsector, ff->ff_sectorsincluster);
return OK;
}
/* The position does not lie within the file */
return -ENOSPC;
}