Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
A new thread is being started and a new TCB
has been created. This function is called to initialize
the processor specific portions of the new TCB.
</p>
<p>
This function must setup the intial architecture registers
and/or stack so that execution will begin at tcb->start
on the next context switch.
</p>
<h3><a name="upcreatestack">4.1.4 <code>up_create_stack()</code></a></h3>
<p><b>Prototype</b>: <code>STATUS up_create_stack(FAR _TCB *tcb, size_t stack_size);</code></p>
<p><b>Description</b>.
Allocate a stack for a new thread and setup
up stack-related information in the TCB.
</p>
<p>
The following TCB fields must be initialized:
</p>
<ul>
<li><code>adj_stack_size</code>: Stack size after adjustment for hardware,
processor, etc. This value is retained only for debug
purposes.</li>
<li><code>stack_alloc_ptr</code>: Pointer to allocated stack</li>
<li><code>adj_stack_ptr</code>: Adjusted <code>stack_alloc_ptr</code> for HW. The
initial value of the stack pointer.
</ul>
<p>
This API is <i>NOT</i> required if <code>CONFIG_CUSTOM_STACK</code>
is defined.
</p>
<p><b>Inputs</b>:</p?
<ul>
<li>
<code>tcb</code>: The TCB of new task.
</li>
<li>
<code>stack_size</code>: The requested stack size. At least this much
must be allocated.
</li>
</ul>
<h3><a name="upusestack">4.1.5 <code>up_use_stack()</code></a></h3>
<p><b>Prototype</b>:
<code>STATUS up_use_stack(FAR _TCB *tcb, FAR void *stack, size_t stack_size);</code>
</p>
<p><b>Description</b>.
Setup up stack-related information in the TCB
using pre-allocated stack memory.
</p>
<p>
The following TCB fields must be initialized:
</p>
<ul>
<li><code>adj_stack_size</code>: Stack size after adjustment for hardware,
processor, etc. This value is retained only for debug
purposes.</li>
<li><code>stack_alloc_ptr</code>: Pointer to allocated stack</li>
<li><code>adj_stack_ptr</code>: Adjusted <code>stack_alloc_ptr</code> for HW. The
initial value of the stack pointer.
</ul>
<p>
This API is <i>NOT</i> required if <code>CONFIG_CUSTOM_STACK</code>
is defined.
</p>
<p><b>Inputs:</b></p>
<ul>
<li>
<code>tcb</code>: The TCB of new task.
</li>
<li>
<code>stack_size</code>: The allocated stack size.
</li>
</ul>
<h3><a name="upreleasestack">4.1.6 <code>up_release_stack()</code></a></h3>
<p><b>Prototype</b>: <code>void up_release_stack(FAR _TCB *dtcb);</code></p>
<p><b>Description</b>.
A task has been stopped. Free all stack
related resources retained int the defunct TCB.
</p>
<p>
This API is <i>NOT</i> required if <code>CONFIG_CUSTOM_STACK</code>
is defined.
</p>
<h3><a name="upunblocktask">4.1.7 <code>up_unblock_task()</code></a></h3>
<p><b>Prototype</b>: <code>void up_unblock_task(FAR _TCB *tcb);</code></p>
<p><b>Description</b>.
A task is currently in an inactive task list
but has been prepped to execute. Move the TCB to the
ready-to-run list, restore its context, and start execution.
</p>
<p>
This function is called only from the NuttX scheduling
logic. Interrupts will always be disabled when this
function is called.
</p>
<p><b>Inputs</b>:
<ul>
<li><code>tcb</code>: Refers to the tcb to be unblocked. This tcb is
in one of the waiting tasks lists. It must be moved to
the ready-to-run list and, if it is the highest priority
ready to run taks, executed.
</li>
</ul>
<h3><a name="upblocktask">4.1.8 <code>up_block_task()</code></a></h3>
<p><b>Prototype</b>: <code>void up_block_task(FAR _TCB *tcb, tstate_t task_state);</code></p>
<p><b>Description</b>.
The currently executing task at the head of
the ready to run list must be stopped. Save its context
and move it to the inactive list specified by task_state.
This function is called only from the NuttX scheduling
logic. Interrupts will always be disabled when this
function is called.
<p><b>Inputs:</b></p>
<ul>
<li><code>tcb</code>: Refers to a task in the ready-to-run list (normally
the task at the head of the list). It most be
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
stopped, its context saved and moved into one of the
waiting task lists. It it was the task at the head
of the ready-to-run list, then a context to the new
ready to run task must be performed.
</li>
<li><code>task_state</code>: Specifies which waiting task list should be
hold the blocked task TCB.
</li>
</ul>
<h3><a name="upreleasepending">4.1.9 <code>up_release_pending()</code></a></h3>
<p><b>Prototype</b>: <code>void up_release_pending(void);</code></p>
<p><b>Description</b>.
When tasks become ready-to-run but cannot run because pre-emption
is disabled, they are placed into a pending task list.
This function releases and makes ready-to-run all of the tasks that have
collected in the pending task list. This can cause a
context switch if a new task is placed at the head of
the ready to run list.
</p>
<p>
This function is called only from the NuttX scheduling logic when
pre-emption is re-enabled. Interrupts will always be disabled when this
function is called.
</p>
<h3><a name="upreprioritizertr">4.1.10 <code>up_reprioritize_rtr()</code></a></h3>
<p><b>Prototype</b>: <code>void up_reprioritize_rtr(FAR _TCB *tcb, ubyte priority);</code></p>
<p><b>Description</b>.
Called when the priority of a running or
ready-to-run task changes and the reprioritization will
cause a context switch. Two cases:
</p>
<ol>
<li>
The priority of the currently running task drops and the next
task in the ready to run list has priority.
</li>
<li>
An idle, ready to run task's priority has been raised above the
the priority of the current, running task and it now has the
priority.
</li>
</ol>
<p>
This function is called only from the NuttX scheduling
logic. Interrupts will always be disabled when this
function is called.
</p>
<p><b>Inputs:</b></p>
<ul>
<li>
<code>tcb</code>: The TCB of the task that has been reprioritized
</li>
<li>
<code>priority</code>: The new task priority
</li>
</ul>
<h3><a name="_exit">4.1.11 <code>_exit()</code></a></h3>
<p><b>Prototype</b>: <code>void _exit(int status) noreturn_function;</code></p>
<p><b>Description</b>.
This function causes the currently executing task to cease
to exist. This is a special case of task_delete().
</p>
<p>
Unlike other UP APIs, this function may be called
directly from user programs in various states. The
implementation of this function should diable interrupts
before performing scheduling operations.
</p>
<h3><a name="upassert">4.1.12 <code>up_assert()</code></a></h3>
<p><b>Prototype</b>:<br>
<code>void up_assert(FAR const ubyte *filename, int linenum);</code></br>
<code>void up_assert_code(FAR const ubyte *filename, int linenum, int error_code);</code></br>
</p>
<p><b>Description</b>.
Assertions may be handled in an architecture-specific
way.
</p>
<h3><a name="upschedulesigaction">4.1.13 <code>up_schedule_sigaction()</code></a></h3>
<p><b>Prototype</b>:
<code>void up_schedule_sigaction(FAR _TCB *tcb, sig_deliver_t sigdeliver);</code>
</p>
<p><b>Description</b>.
This function is called by the OS when one or more
signal handling actions have been queued for execution.
The architecture specific code must configure things so
that the 'igdeliver' callback is executed on the thread
specified by 'tcb' as soon as possible.
</p>
<p>
This function may be called from interrupt handling logic.
</p>
<p>
This operation should not cause the task to be unblocked
nor should it cause any immediate execution of sigdeliver.
Typically, a few cases need to be considered:
</p>
<ol>
<li>
This function may be called from an interrupt handler
During interrupt processing, all xcptcontext structures
should be valid for all tasks. That structure should
be modified to invoke sigdeliver() either on return
from (this) interrupt or on some subsequent context
switch to the recipient task.
</li>
<li>
If not in an interrupt handler and the tcb is NOT
the currently executing task, then again just modify
the saved xcptcontext structure for the recipient
task so it will invoke sigdeliver when that task is
later resumed.
</li>
<li>
If not in an interrupt handler and the tcb IS the
currently executing task -- just call the signal
handler now.
</li>
</ol>
<p>
This API is <i>NOT</i> required if <code>CONFIG_DISABLE_SIGNALS</code>
is defined.
</p>
<h3><a name="upallocateheap">4.1.14 <code>up_allocate_heap()</code></a></h3>
<p><b>Prototype</b>: <code>void up_allocate_heap(FAR void **heap_start, size_t *heap_size);</code></p>
<p><b>Description</b>.
The heap may be statically allocated by
defining CONFIG_HEAP_BASE and CONFIG_HEAP_SIZE. If these
are not defined, then this function will be called to
dynamically set aside the heap region.
</p>
<p>
This API is <i>NOT</i> required if <code>CONFIG_HEAP_BASE</code>
is defined.
</p>
<h3><a name="upinterruptcontext">4.1.15 <code>up_interrupt_context()</code></a></h3>
<p><b>Prototype</b>: <code>boolean up_interrupt_context(void)</code></p>
<p><b>Description</b>.
Return TRUE is we are currently executing in
the interrupt handler context.
</p>
<h3><a name="updisableirq">4.1.16 <code>up_disable_irq()</code></a></h3>
<p><b>Prototype</b>: <code>void up_disable_irq(int irq);</code></p>
<p><b>Description</b>.
Disable the IRQ specified by 'irq'
</p>
<h3><a name="upenableirq">4.1.17 <code>up_enable_irq()</code></a></h3>
<p><b>Prototype</b>: <code>void up_enable_irq(int irq);</code></p>
<p><b>Description</b>.
Enable the IRQ specified by 'irq'
</p>
<h3><a name="upputc">4.1.18 <code>up_putc()</code></a></h3>
<p><b>Prototype</b>: <code>int up_putc(int ch);</code></p>
<p><b>Description</b>.
This is a debug interface exported by the architecture-specific logic.
Output one character on the console
<p>
This API is <i>NOT</i> required if <code>CONFIG_HEAP_BASE</code>
is defined.
</p>
<h2><a name="exports">4.2 APIs Exported by NuttX to Architecture-Specific Logic</a></h2>
<p>
These are standard interfaces that are exported by the OS
for use by the architecture specific logic.
</p>
<h3><a name="osstart">4.2.1 <code>os_start()</code></a></h3>
<p>
<b><i>To be provided</i></b>
</p>
<h3><a name="listmgmt">4.2.2 OS List Management APIs</a></h3></h3>
<p>
<b><i>To be provided</i></b>
</p>
<h3><a name="schedprocesstimer">4.2.3 <code>sched_process_timer()</code></a></h3>
<p><b>Prototype</b>: <code>void sched_process_timer(void);</code></p>
<p><b>Description</b>.
This function handles system timer events.
The timer interrupt logic itself is implemented in the
architecture specific code, but must call the following OS
function periodically -- the calling interval must be
<code>MSEC_PER_TICK</code>.
</p>
<h3><a name="irqdispatch">4.2.4 <code>irq_dispatch()</code></a></h3>
<p><b>Prototype</b>: <code>void irq_dispatch(int irq, FAR void *context);</code></p>
<p><b>Description</b>.
This function must be called from the achitecture-
specific logic in order to dispaly an interrupt to
the appropriate, registered handling logic.
</p>
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
<h1><a name="NxFileSystem">5.0 NuttX File System</a></h1>
<p><b>Overview</b>.
NuttX includes an optional, scalable file system.
This file-system may be omitted altogther; NuttX does not depend on the presence
of any file system.
</p>
<p><b>Pseudo Root File System</b>.
Or, a simple <i>in-memory</i>, <i>psuedo</i> file system can be enabled.
This simple file system can be enabled setting the CONFIG_NFILE_DESCRIPTORS
option to a non-zero value (see <a href="#apndxconfigs">Appendix A</a>).
This is an <i>in-memory</i> file system because it does not require any
storage medium or block driver support.
Rather, file system contents are generated on-the-fly as referenced via
standard file system operations (open, close, read, write, etc.).
In this sense, the file system is <i>psuedo</i> file system (in the
same sense that the Linux <code>/proc</code> file system is also
referred to as a psuedo file system).
</p>
<p>
Any user supplied data or logic can be accessed via the psuedo-file system.
Built in support is provided for character and block drivers in the
<code>/dev</code> psuedo file system directory.
</p>
<p><b>Mounted File Systems</b>
The simple in-memory file system can be extended my mounting block
devices that provide access to true file systems backed up via some
mass storage device.
NuttX supports the standard <code>mount()</code> command that allows
a block driver to be bound to a mountpoint within the psuedo file system
and to a a file system.
At present, NuttX supports only the VFAT file system.
</p>
<p><b>Comparison to Linux</b>
From a programming perspective, the NuttX file system appears very similar
to a Linux file system.
However, there is a fundamental difference:
The NuttX root file system is a psuedo file system and true file systems may be
mounted in the psuedo file system.
In the typical Linux installation by comparison, the Linux root file system
is a true file system and psuedo file systems may be mounted in the true,
root file system.
The approach selected by NuttX is intended to support greater scalability
from the very tiny platform to the moderate platform.
</p>
<h1><a name="apndxconfigs">Appendix A: NuttX Configuration Settings</a></h1>
<p>
The following variables are recognized by the build (you may
also include architecture-specific settings).
</p>
<h2>Architecture selection</h2>
<p>
The following configuration itemes select the architecture, chip, and
board configuration for the build.
</p>
<li><code>CONFIG_ARCH</code>:
Identifies the arch subdirectory</li>
<li><code>CONFIG_ARCH_name</code>:
For use in C code</li>
<li><code>CONFIG_ARCH_CHIP</code>:
Identifies the arch/*/chip subdirectory</li>
<li><code>CONFIG_ARCH_CHIP_name</code>:
For use in C code</li>
<li><code>CONFIG_ARCH_BOARD</code>:
Identifies the configs subdirectory and hence, the board that supports
the particular chip or SoC.</li>
<li><code>CONFIG_ARCH_BOARD_name</code>:
For use in C code</li>
<li><code>CONFIG_ENDIAN_BIG</code>:
Define if big endian (default is little endian).</li>
<li><code>CONFIG_ARCH_NOINTC</code>:
Define if the architecture does not support an interrupt controller
or otherwise cannot support APIs like up_enable_irq() and up_disable_irq().</li>
<li><code>CONFIG_ARCH_IRQPRIO</code>:
Define if the architecture suports prioritizaton of interrupts and the
up_prioritize_irq() API.</li>
Some architectures require a description of the RAM configuration:
</p>
<ul>
<li><code>CONFIG_DRAM_SIZE</code>:
Describes the installed DRAM.</li>
<li><code>CONFIG_DRAM_START</code>:
The start address of DRAM (physical)</li>
<li><code>CONFIG_DRAM_VSTART</code>:
The start address of DRAM (virtual)</li>
<p>
General build options:
</p>
<ul>
<li><code>CONFIG_RRLOAD_BINARY</code>:
Make the rrload binary format used with BSPs from <a href="www.ridgerun.com">ridgerun.com</a>
using the <code>tools/mkimage.sh</code> script.</li>
<li><code>CONFIG_INTELHEX_BINARY</code>:
Make the Intel HEX binary format used with many different loaders using the GNU objcopy program
This option hould not be selected if you are not using the GNU toolchain.</li>
<li><code>CONFIG_MOTOROLA_SREC</code>:
Make the Motorola S-Record binary format used with many different loaders using the GNU objcopy program
Should not be selected if you are not using the GNU toolchain.</li>
<li><code>CONFIG_RAW_BINARY</code>:
mmke a raw binary format file used with many different loaders using the GNU objcopy program.
This option should not be selected if you are not using the GNU toolchain.</li>
Toolchain supports libm.a</li>
</ul>
<h2>General OS setup</h2>
<ul>
<li>
<code>CONFIG_EXAMPLE</code>: identifies the subdirectory in examples
that will be used in the build.
</li>
<li>
<code>CONFIG_DEBUG</code>: enables built-in debug options
</li>
<li>
<code>CONFIG_DEBUG_VERBOSE</code>: enables verbose debug output
</li>
<li>
<code>CONFIG_DEBUG_SCHED</code>: enable OS debug output (disabled by default)
</li>
<li>
<code>CONFIG_DEBUG_MM</code>: enable memory management debug output (disabld by default)
</li>
<li>
<code>CONFIG_DEBUG_NET</code>: enable network debug output (disabled by default)
<code>CONFIG_DEBUG_FS</code>: enable file system debug output (disabled by default)
</li>
<li>
<code>CONFIG_DEBUG_LIB</code>: enable C library debug output (disabled by default)
<code>CONFIG_ARCH_LOWPUTC</code>: architecture supports low-level, boot
time console output
</li>
<li>
<code>CONFIG_MM_REGIONS</code>: If the architecture includes multiple
regions of memory to allocate from, this specifies the
number of memory regions that the memory manager must
handle and enables the API mm_addregion(start, end);
</li>
<li>
<code>CONFIG_TICKS_PER_MSEC</code>: The default system timer is 100Hz
or <code>TICKS_PER_MSEC</code>=10. This setting may be defined to inform NuttX
that the processor hardware is providing system timer interrupts at some interrupt
interval other than 10 msec.
</li>
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
<li>
<code>CONFIG_RR_INTERVAL</code>: The round robin timeslice will be set
this number of milliseconds; Round robin scheduling can
be disabled by setting this value to zero.
</li>
<li>
<code>CONFIG_SCHED_INSTRUMENTATION</code>: enables instrumentation in
scheduler to monitor system performance
</li>
<li>
<code>CONFIG_TASK_NAME_SIZE</code>: Spcifies that maximum size of a
task name to save in the TCB. Useful if scheduler
instrumentation is selected. Set to zero to disable.
</li>
<li>
<code>CONFIG_START_YEAR, CONFIG_START_MONTH, CONFIG_START_DAY -
Used to initialize the internal time logic.
</li>
<li>
<code>CONFIG_JULIAN_TIME</code>: Enables Julian time conversions
</li>
<li>
<code>CONFIG_DEV_CONSOLE</code>: Set if architecture-specific logic
provides /dev/console. Enables stdout, stderr, stdin.
</li>
<li>
<code>CONFIG_MUTEX_TYPES</code>: Set to enabled support for recursive and
errorcheck mutexes. Enables <code>pthread_mutexattr_settype()</code>.
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
</ul>
<p>
The following can be used to disable categories of APIs supported
by the OS. If the compiler supports weak functions, then it
should not be necessary to disable functions unless you want to
restrict usage of those APIs.
</p>
<p>
There are certain dependency relationships in these features.
</p>
<ul>
<li>
<code>mq_notify()</code> logic depends on signals to awaken tasks
waiting for queues to become full or empty.
</li>
<li>
<code>pthread_condtimedwait()</code> depends on signals to wake
up waiting tasks.
</li>
</ul>
<ul>
patacongo
committed
<code>CONFIG_DISABLE_CLOCK</code>, <code>CONFI_DISABLE_POSIX_TIMERS</code>,
<code>CONFIG_DISABLE_PTHREAD</code>, <code>CONFIG_DISABLE_SIGNALS</code>,
<code>CONFIG_DISABLE_MQUEUE</code>, <code>CONFIG_DISABLE_MOUNTPOUNT</code>
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
</ul>
<h2>Miscellaneous libc settings</h2>
<ul>
<li>
<code>CONFIG_NOPRINTF_FIELDWIDTH</code>: sprintf-related logic is a
little smaller if we do not support fieldwidthes
</li>
</ul>
<h2>Allow for architecture optimized implementations</h2>
<p>
The architecture can provide optimized versions of the
following to improve sysem performance.
</p>
<ul>
<p>
<code>CONFIG_ARCH_MEMCPY</code>, <code>CONFIG_ARCH_MEMCMP</code>, <code>CONFIG_ARCH_MEMMOVE</code>,
<code>CONFIG_ARCH_MEMSET</code>, <code>CONFIG_ARCH_STRCMP</code>, <code>CONFIG_ARCH_STRCPY</code>,
<code>CONFIG_ARCH_STRNCPY</code>, <code>CONFIG_ARCH_STRLEN</code>, <code>CONFIG_ARCH_BZERO</code>,
<code>CONFIG_ARCH_KMALLOC</code>, <code>CONFIG_ARCH_KZMALLOC</code>, <code>ONFIG_ARCH_KFREE</code>,
</p>
</ul>
<h2>Sizes of configurable things (0 disables)</h2>
<ul>
<li>
<code>CONFIG_MAX_TASKS</code>: The maximum number of simultaneously
active tasks. This value must be a power of two.
</li>
<li>
<code>CONFIG_NPTHREAD_KEYS</code>: The number of items of thread-
specific data that can be retained
</li>
<li>
<code>CONFIG_NFILE_DESCRIPTORS</code>: The maximum number of file
descriptors (one for each open)
</li>
<li>
<code>CONFIG_NFILE_STREAMS</code>: The maximum number of streams that
can be fopen'ed
</li>
<li>
<code>CONFIG_NAME_MAX</code>: The maximum size of a file name.
</li>
<li>
<code>CONFIG_STDIO_BUFFER_SIZE</code>: Size of the buffer to allocate
on fopen. (Only if CONFIG_NFILE_STREAMS > 0)
</li>
<li>
<code>CONFIG_NUNGET_CHARS</code>: Number of characters that can be
buffered by ungetc() (Only if CONFIG_NFILE_STREAMS > 0)
</li>
<li>
<code>CONFIG_PREALLOC_MQ_MSGS</code>: The number of pre-allocated message
structures. The system manages a pool of preallocated
message structures to minimize dynamic allocations
</li>
<li>
<code>CONFIG_MQ_MAXMSGSIZE</code>: Message structures are allocated with
a fixed payload size given by this settin (does not include
other message structure overhead.
</li>
<li>
<code>CONFIG_PREALLOC_WDOGS</code>: The number of pre-allocated watchdog
structures. The system manages a pool of preallocated
watchdog structures to minimize dynamic allocations
</li>
<code>CONFIG_DEV_PIPE_SIZE</code>: Size, in bytes, of the buffer to allocated
for pipe and FIFO support (default is 1024).
<h2>File Systems</h2>
<ul>
<li>
<code>CONFIG_FS_FAT</code>: Enable FAT filesystem support.
</li>
<li>
<code>CONFIG_FAT_SECTORSIZE</code>: Max supported sector size.
</li>
<li>
<code>CONFIG_FS_ROMFS</code>: Enable ROMFS filesystem support
</li>
</ul>
<ul>
<li>
<code>CONFIG_MMCSD_NSLOTS</code>: Number of MMC/SD slots supported by the driver. Default is one.
</li>
<li>
<code>CONFIG_MMCSD_READONLY</code>: Provide read-only access. Default is Read/Write
</li>
</ul>
<h3>TCP/IP and UDP support via uIP</h2>
<code>CONFIG_NET</code>: Enable or disable all network features
<code>CONFIG_NET_IPv6</code>: Build in support for IPv6
<code>CONFIG_NSOCKET_DESCRIPTORS</code>: Maximum number of socket descriptors per task/thread.
<li>
<code>CONFIG_NET_NACTIVESOCKETS</code>: Maximum number of concurrent socket operations (recv, send, etc.).
Default: <code>CONFIG_NET_TCP_CONNS</code>+<code>CONFIG_NET_UDP_CONNS</code>.
</li>
<code>CONFIG_NET_SOCKOPTS</code>: Enable or disable support for socket options.
<code>CONFIG_NET_BUFSIZE</code>: uIP buffer size
<code>CONFIG_NET_TCP</code>: TCP support on or off
<code>CONFIG_NET_TCP_CONNS</code>: Maximum number of TCP connections (all tasks).
<li>
<code>CONFIG_NET_TCPBACKLOG</code>:
Incoming connections pend in a backlog until <code>accept()</code> is called.
The size of the backlog is selected when <code>listen()</code> is called.
</li>
<li>
<code>CONFIG_NET_TCP_READAHEAD_BUFSIZE</code>: Size of TCP read-ahead buffers
</li>
<li>
<code>CONFIG_NET_NTCP_READAHEAD_BUFFERS</code>: Number of TCP read-ahead buffers (may be zero)
<li>
<code>CONFIG_NET_MAX_LISTENPORTS</code>: Maximum number of listening TCP ports (all tasks).
</li>
<li>
<code>CONFIG_NET_TCPURGDATA</code>: Determines if support for TCP urgent data
notification should be compiled in. Urgent data (out-of-band data)
is a rarely used TCP feature that is very seldom would be required.
</li>
<code>CONFIG_NET_UDP</code>: UDP support on or off
<code>CONFIG_NET_UDP_CHECKSUMS</code>: UDP checksums on or off
<code>CONFIG_NET_UDP_CONNS</code>: The maximum amount of concurrent UDP connections
<code>CONFIG_NET_ICMP</code>: Enable minimal ICMP support. Includes built-in support
for sending replies to received ECHO (ping) requests.
</li>
<li>
<code>CONFIG_NET_ICMP_PING</code>: Provide interfaces to support application level
support for sending ECHO (ping) requests and associating ECHO replies.
<code>CONFIG_NET_PINGADDRCONF</code>: Use "ping" packet for setting IP address
<li>
<code>CONFIG_NET_STATISTICS</code>: uIP statistics on or off
</li>
<code>CONFIG_NET_RECEIVE_WINDOW</code>: The size of the advertised receiver's window
<code>CONFIG_NET_ARPTAB_SIZE</code>: The size of the ARP table
<code>CONFIG_NET_BROADCAST</code>: Incoming UDP broadcast support
</li>
<li>
<code>CONFIG_NET_MULTICAST</code>: Outgoing multi-cast address support
<code>CONFIG_NET_LLH_LEN</code>: The link level header length
<li>
<code>CONFIG_NET_FWCACHE_SIZE</code>: number of packets to remember when looking for duplicates
</li>
</ul>
<h3>UIP Network Utilities</h3>
<ul>
<li>
<code>CONFIG_NET_DHCP_LIGHT</code>: Reduces size of DHCP
<code>CONFIG_NET_RESOLV_ENTRIES</code>: Number of resolver entries
<h2>USB Device-Side Support</h2>
<h3>USB Device Controller Driver</h3>
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
<ul>
<li>
<code>CONFIG_USBDEV</code>: Enables USB device support
</li>
<li>
<code>CONFIG_USBDEV_ISOCHRONOUS</code>: Build in extra support for isochronous endpoints
</li>
<li>
<code>CONFIG_USBDEV_DUALSPEED</code>: Hardware handles high and full speed operation (USB 2.0)
</li>
<li>
<code>CONFIG_USBDEV_SELFPOWERED</code>: Will cause USB features to indicate that the device is self-powered
</li>
<li>
<code>CONFIG_USBDEV_MAXPOWER</code>: Maximum power consumption in mA
</li>
<li>
<code>CONFIG_USBDEV_TRACE</code>: Enables USB tracing for debug
</li>
<li>
<code>CONFIG_USBDEV_TRACE_NRECORDS</code>: Number of trace entries to remember
</li>
</ul>
<h3>USB Serial Device Class Driver</h3>
<ul>
<li>
<code>CONFIG_USBSER</code>: Enable compilation of the USB serial driver
</li>
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
<li>
<code>CONFIG_USBSER_EPINTIN</code>: The logical 7-bit address of a hardware endpoint that supports interrupt IN operation
</li>
<li>
<code>CONFIG_USBSER_EPBULKOUT</code>: The logical 7-bit address of a hardware endpoint that supports bulk OUT operation
</li>
<li>
<code>CONFIG_USBSER_EPBULKIN</code>: The logical 7-bit address of a hardware endpoint that supports bulk IN operation
</li>
<li>
<code>CONFIG_USBSER_NWRREQS</code> and <code>CONFIG_USBSER_NRDREQS</code>: The number of write/read requests that can be in flight
</li>
<li>
<code>CONFIG_USBSER_VENDORID</code> and <code>CONFIG_USBSER_VENDORSTR</code>: The vendor ID code/string
</li>
<li>
<code>CONFIG_USBSER_PRODUCTID</code> and <code>CONFIG_USBSER_PRODUCTSTR</code>: The product ID code/string
</li>
<li>
<code>CONFIG_USBSER_RXBUFSIZE</code> and <code>CONFIG_USBSER_TXBUFSIZE</code>: Size of the serial receive/transmit buffers
</li>
</ul>
<h3>USB Storage Device Configuration</h3>
<ul>
<li>
<code>CONFIG_USBSTRG</code>:
Enable compilation of the USB storage driver
</li>
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
<li>
<code>CONFIG_USBSTRG_EP0MAXPACKET</code>:
Max packet size for endpoint 0
</li>
<li>
<code>CONFIG_USBSTRGEPBULKOUT</code> and <code>CONFIG_USBSTRG_EPBULKIN</code>:
The logical 7-bit address of a hardware endpoints that support bulk OUT and IN operations
</li>
<li>
<code>CONFIG_USBSTRG_NWRREQS</code> and <code>CONFIG_USBSTRG_NRDREQS</code>:
The number of write/read requests that can be in flight
</li>
<li>
<code>CONFIG_USBSTRG_BULKINREQLEN</code> and <code>CONFIG_USBSTRG_BULKOUTREQLEN</code>:
The size of the buffer in each write/read request.
This value needs to be at least as large as the endpoint maxpacket and
ideally as large as a block device sector.
</li>
<li>
<code>CONFIG_USBSTRG_VENDORID</code> and <code>CONFIG_USBSTRG_VENDORSTR</code>:
The vendor ID code/string
</li>
<li>
<code>CONFIG_USBSTRG_PRODUCTID</code> and <code>CONFIG_USBSTRG_PRODUCTSTR</code>:
The product ID code/string
</li>
<li>
<code>CONFIG_USBSTRG_REMOVABLE</code>:
Select if the media is removable
</li>
</ul>
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
<h2>Graphics related configuration settings</h3>
<ul>
<li>
<code>CONFIG_NXGRAPHICS</code>
Enables overall support for graphics library and NX
</li>
</ul>
<h3>NX configuration setting</h3>
<ul>
<li>
<code>CONFIG_NX_MULTIUSER</code>
Configures NX in multi-user mode
</li>
<li>
<code>CONFIG_NX_NPLANES</code>
Some YUV color formats requires support for multiple planes,
one for each color component. Unless you have such special
hardware, this value should be undefined or set to 1
</li>
<li>
<code>CONFIG_NXGLIB_DISABLE_1BPP</code>, <code>CONFIG_NXGLIB_DISABLE_2BPP</code>,
<code>CONFIG_NXGLIB_DISABLE_4BPP</code>, <code>CONFIG_NXGLIB_DISABLE_8BPP</code>
<code>CONFIG_NXGLIB_DISABLE_16BPP</code>, <code>CONFIG_NXGLIB_DISABLE_24BPP</code>, and
<code>CONFIG_NXGLIB_DISABLE_32BPP
NX supports a variety of pixel depths. You can save some
memory by disabling support for unused color depths.
</li>
<li>
<code>CONFIG_NXGL_PACKEDMSFIRST</code>
If a pixel depth of less than 8-bits is used, then NX needs
to know if the pixels pack from the MS to LS or from LS to MS
</li>
<li>
<code>CONFIG_NX_MOUSE</code>
Build in support for mouse input
</li>
<li>
<code>CONFIG_NX_KBD</code>
Build in support of keypad/keyboard input
</li>
</ul>
<h3>NX Multi-user only options</h3>
<ul>
<li>
<code>CONFIG_NX_BLOCKING</code>
Open the client message queues in blocking mode. In this case,
<code>nx_eventhandler()</code> will never return.
</li>
<li>
<code>CONFIG_NX_MXSERVERMSGS</code> and <code>CONFIG_NX_MXCLIENTMSGS</code>
Specifies the maximum number of messages that can fit in
the message queues. No additional resources are allocated, but
this can be set to prevent flooding of the client or server with
too many messages (<code>CONFIG_PREALLOC_MQ_MSGS</code> controls how many
messages are pre-allocated).
</li>
</ul>
<h2>Stack and heap information</h2>
<ul>
<li>
<code>CONFIG_BOOT_FROM_FLASH</code>: Some configurations support XIP
operation from FLASH.
</li>
<li>
<code>CONFIG_STACK_POINTER</code>: The initial stack pointer
</li>
<li>
<code>CONFIG_IDLETHREAD_STACKSIZE</code>: The size of the initial stack.
This is the thread that (1) performs the inital boot of the system up
to the point where user_start() is spawned, and (2) there after is the
IDLE thread that executes only when there is no other thread ready to
run.
</li>
<li>
<code>CONFIG_USERMAIN_STACKSIZE</code>: The size of the stack to allocate
for the main user thread that begins at the user_start() entry point.
</li>
<li>
<code>CONFIG_PTHREAD_STACK_MIN</code>: Minimum pthread stack size
</li>
<li>
<code>CONFIG_PTHREAD_STACK_DEFAULT</code>: Default pthread stack size
</li>
<li>
<code>CONFIG_HEAP_BASE</code>: The beginning of the heap
</li>
<li>
<code>CONFIG_HEAP_SIZE</code>: The size of the heap
</li>
</ul>
<h1><a name="apndxtrademarks">Appendix B: Trademarks</a></h1>
<li>ARM, ARM7 ARM7TDMI, ARM9, ARM926EJS are trademarks of Advanced RISC Machines, Limited.</li>
<li>Cygwin is a trademark of Red Hat, Incorporated.</li>
<li>Linux is a registered trademark of Linus Torvalds.</li>
<li>LPC2148 is a trademark of NXP Semiconductors.</li>
<li>TI is a tradename of Texas Instruments Incorporated.</li>
<li>UNIX is a registered trademark of The Open Group.</li>
<li>VxWorks is a registered trademark of Wind River Systems, Incorporated.</li>
<li>ZDS, ZNEO, Z16F, Z80, and Zilog are a registered trademark of Zilog, Inc.</li>
<p>
NOTE: NuttX is <i>not</i> licensed to use the POSIX trademark. NuttX uses the POSIX
standard as a development guideline only.
</p>