Newer
Older
<body background="backgd.gif">
<hr>
<hr>
<center><h1><i>Under Construction</i></h1></center>
<hr>
<hr>
NuttX Operating System
<P>
User's Manual
</B></BIG>
<P>
<SMALL>by</SMALL>
<P>
Gregory Nutt
<P>
</CENTER>
<H1>1.0 <A NAME="Introduction">Introduction</A></H1>
<P>
<UL>
<LI><B>Section 1.0, <A HREF="#Introduction">Introduction</A></B>:
This section provides an overview of the NuttX user's manual.
<LI><B>Section 2.0, <A HREF="#OS_Interfaces">OS Interfaces</A></B>:
This section details the interfaces provided by NuttX from the
perspective of the firmware developer. This section is divided
into several paragraphs that describe different groups of OS interfaces:
<UL>
<LI>Paragraph 2.1 <A HREF="#Task_Control">Task Control Interfaces</A>
<LI>Paragraph 2.2 <A HREF="#Task_Schedule">Task Scheduling Interfaces</A>
<LI>Paragraph 2.3 <A HREF="#Task_Switch">Task Switching Interfaces</A>
<LI>Paragraph 2.4 <A HREF="#Message_Queue">Named Message Queue Interfaces</A>
<LI>Paragraph 2.5 <A HREF="#Semaphores">Counting Semaphore Interfaces</A>
<LI>Paragraph 2.6 <A HREF="#Watchdogs">Watchdog Timer Interfaces</A>
<LI>Paragraph 2.7 <A HREF="#ClocksNTimers">Clocks and Timers</A>
<LI>Paragraph 2.8 <A HREF="#Signals">Signal Interfaces</A>
<LI>Paragraph 2.9 <A HREF="#Pthread">Pthread Interfaces</A>
<LI>Paragraph 2.10 <A HREF="#FileSystem">Filesystem Interfaces</A>
</UL>
<LI><B>Section 3.0, <A HREF="#Data_Structures">OS Data Structures</A></B>:
This section documents the data structures that are used at the NuttX
<HR>
<H1>2.0 <A NAME="OS_Interfaces">OS Interfaces</A></H1>
<P>
This section describes each C-callable interface to the NuttX
Operating System. The description of each interface is presented
in the following format:
<P>
<B>Function Prototype:</B> The C prototype of the interface function
is provided.
<P>
<B>Description:</B> The operation performed by the interface function
is discussed.
<P>
<B>Input Parameters:</B> All input parameters are listed along
with brief descriptions of each input parameter.
<P>
<B>Returned Values:</B> All possible values returned by the interface
function are listed. Values returned as side-effects (through
pointer input parameters or through global variables) will be
addressed in the description of the interface function.
<P>
<B>Assumptions/Limitations:</B> Any unusual assumptions made by
the interface function or any non-obvious limitations to the use
of the interface function will be indicated here.
<P>
<B>POSIX Compatibility:</B> Any significant differences between the
NuttX interface and its corresponding POSIX interface will be noted
NOTE: In order to achieve an independent name space for the NuttX
interface functions, differences in function names and types are
to be expected and will not be identified as differences in these
paragraphs.
<HR>
<H2>2.1 <A NAME="Task_Control">Task Control Interfaces</A></H2>
<p>
NuttX is a flat address OS. As such it does not support <i>processes</i>
in the way that, say, Linux does.
NuttX only supports simple threads running within the same address space.
However, the programming model makes a distinction between <i>tasks</i>
and <i>pthreads</i>:
<li><i>tasks</i> are threads which have a degree of independence
<li><a href="#Pthread"><i>pthreads</i></a> share some resources.
<b>File Descriptors and Streams</b>.
This applies, in particular, in the area of opened file descriptors and streams.
When a task is started using the interfaces in this section, it will be created
with at most three open files.
</p>
</p>
If CONFIG_DEV_CONSOLE is defined, the first three file descriptors (corresponding
to stdin, stdout, stderr) will be duplicated for the the new task.
Since these file descriptors are duplicated, the child task can free close
them or manipulate them in any way without effecting the parent task.
File-related operations (open, close, etc.) within a task will have no effect
on other tasks.
Since the three file descriptors are duplicated, it is also possible to perform
some level of redirection.
</p>
<p>
pthreads, on the other hand, will always share file descriptors with the parent
thread. In this case, file operations will have effect only all pthreads the
were started from the same parent thread.
</p>
The following task control interfaces are provided by Nuttx:
</p>
<ul>
<li><a href="#taskcreate">2.1.1 task_create</a></li>
<li><a href="#taskinit">2.1.2 task_init</a></li>
<li><a href="#taskactivate">2.1.3 task_activate</a></li>
<li><a href="#taskdelete">2.1.4 task_delete</a></li>
<li><a href="#exit">2.1.5 exit</a></li>
<li><a href="#taskrestart">2.1.6 task_restart</a></li>
<li><a href="#getpid">2.1.7 getpid</a></li>
</ul>
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
int task_create(char *name, int priority, int stack_size, main_t entry, const char *argv[]);
</PRE>
<P>
<B>Description:</B>
This function creates and activates a new task with a
specified priority and returns its system-assigned ID.
</p>
<P>The entry address entry is the address of the "main"
function of the task.
This function will be called once the C environment has been set up.
The specified function will be called with four arguments.
Should the specified routine return, a call to exit() will automatically be made.
</P>
<p>
Note that an arbitrary number of arguments may be passed to the
spawned functions. The maximum umber of arguments is an OS
configuration parameter (<code>CONFIG_MAX_TASK_ARGS</code>).
</p>
<p>
The arguments are copied (via <code>strdup</code>) so that the
life of the passed strings is not dependent on the life of the
caller to <code>task_create()</code>.
</p>
<p>
The newly created task does not inherit scheduler characteristics
from the parent task: The new task is started at the
default system priority and with the SCHED_FIFO scheduling
policy. These characteristcs may be modified after the new
task has been started.
</p>
<p>
The newly created task does inherit the first three file
descriptors (corresponding to stdin, stdout, and stderr) and
redirection of standard I/O is supported.
</p>
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>name</I>. Name of the new task</LI>
<LI><I>priority</I>. Priority of the new task</LI>
<LI><I>stack_size</I>. size (in bytes) of the stack needed</LI>
<LI><I>entry</I>. Entry point of a new task</LI>
<LI><I>argv</I>. A pointer to an array of input parameters. Up to
<code>CONFIG_MAX_TASK_ARG</code> parameters may be provided.
If fewer than <code>CONFIG_MAX_TASK_ARG</code> parameters are
passed, the list should be terminated with a NULL argv[] value.
If no parameters are required, argv may be NULL.
Returns the non-zero task ID of the new task or
ERROR if memory is insufficient or the task cannot be
created (errno is not set).
</LI>
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following similar interface:
<PRE>
int taskSpawn(char *name, int priority, int options, int stackSize, FUNCPTR entryPt,
int arg1, int arg2, int arg3, int arg4, int arg5,
int arg6, int arg7, int arg8, int arg9, int arg10);
The NuttX task_create() differs from VxWorks' taskSpawn() in the
following ways:
</p>
<LI>Interface name
<LI>Various differences in types of arguments
<LI>A variable number of parameters can be passed to a task (VxWorks supports ten).
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
STATUS task_init(_TCB *tcb, char *name, int priority, uint32 *stack, uint32 stack_size,
maint_t entry, const char *argv[]);
</PRE>
<P>
<B>Description:</B>
<P>
This function initializes a Task Control Block (TCB)
in preparation for starting a new thread. It performs a subset
of the functionality of <code>task_create()</code> (see above).
</P>
<P>
Unlike task_create(), task_init() does not activate the task.
This must be done by calling task_activate().
</P>
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>tcb</I>. Address of the new task's TCB
<LI><I>name</I>. Name of the new task (not used)
<LI><I>priority</I>. Priority of the new task
<LI><I>stack</I>. Start of the pre-allocated stack
<LI><I>stack_size</I>. size (in bytes) of the pre-allocated stack
<LI><I>entry</I>. Entry point of a new task
<LI><I>argv</I>. A pointer to an array of input parameters. Up to
<code>CONFIG_MAX_TASK_ARG</code> parameters may be provided.
If fewer than <code>CONFIG_MAX_TASK_ARG</code> parameters are
passed, the list should be terminated with a NULL argv[] value.
If no parameters are required, argv may be NULL.
</UL>
</p>
<P>
<B>Returned Values:</B>
</p>
<UL>
<LI><P>OK, or ERROR if the task cannot be initialized.</P>
<P>This function can only failure is it is unable to assign
a new, unique task ID to the TCB (errno is not set).</P>
</UL>
<P>
<B>Assumptions/Limitations:</B>
<UL>
<LI>task_init() is provided to support internal OS functionality. It is
<B>not recommended</B> for normal usage. task_create() is the preferred
mechanism to initialize and start a new task.
</UL>
<P>
<B>POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following similar interface:
<PRE>
STATUS taskInit(WIND_TCB *pTcb, char *name, int priority, int options, uint32 *pStackBase, int stackSize,
FUNCPTR entryPt, int arg1, int arg2, int arg3, int arg4, int arg5,
int arg6, int arg7, int arg8, int arg9, int arg10);
The NuttX task_init() differs from VxWorks' taskInit() in the
following ways:
</p>
<LI>Interface name
<LI>Various differences in types or arguments
<LI>There is no options argument.
<LI>A variable number of parameters can be passed to a task (VxWorks supports ten).
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
STATUS task_activate( _TCB *tcb );
</PRE>
<P>
<B>Description:</B> This function activates tasks created by task_init().
Without activation, a task is ineligible for execution by the
scheduler.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>tcb</I>. The TCB for the task for the task (same as the
task_init argument).
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>OK, or ERROR if the task cannot be activated (errno is not set).
</UL>
<P>
<B>Assumptions/Limitations:</B>
<UL>
<LI>task_activate() is provided to support internal OS functionality. It is
<B>not recommended</B> for normal usage. task_create() is the preferred
mechanism to initialize and start a new task.
</UL>
<P>
<B>POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following similar interface:
<PRE>
STATUS taskActivate( int tid );
</PRE>
<P>
The NuttX task_activate() differs from VxWorks' taskActivate() in the
following ways:
</p>
<UL>
<LI>Function name
<LI>With VxWork's taskActivate, the pid argument is supposed to be
the pointer to the WIND_TCB cast to an integer.
</UL>
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
STATUS task_delete( pid_t pid );
</PRE>
<P>
<B>Description:</B> This function causes a specified task to cease
to exist -- its stack and TCB will be deallocated. This function
is the companion to task_create().
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>pid</I>. The task ID of the task to delete. An ID of
zero signifies the calling task.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>OK, or ERROR if the task cannot be deleted.
This function can fail if the provided pid does not correspond to a task (errno is not set)
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
task_delete() must be used with caution: If the task holds resources
(for example, allocated memory or semaphores needed by other tasks), then
task_delete() can strand those resources.
<P>
<B>POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following similar interface:
<PRE>
STATUS taskDelete( int tid );
</PRE>
<P>
The NuttX task_delete() differs from VxWorks' taskDelete() in
the following ways:
</p>
<UL>
<LI>No support is provided for calling the tasks deletion routines
(because taskDeleteHookAdd() is not supported).
<LI>Deletion of self is not supported. Use _exit();
</UL>
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
void exit( int code );
#include <nuttx/unistd.h>
void _exit( int code );
</PRE>
<P>
<B>Description:</B> This function causes the calling task to cease
to exist -- its stack and TCB will be deallocated. exit differs from
_exit in that it flushs streams, closes file descriptors and will
execute any function registered with atexit().
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>code</I>. (ignored)
</UL>
<P>
<B>Returned Values:</B> None.
<P>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> This is equivalent to the ANSI interface:
<PRE>
void exit( int code );
</PRE>
And the unix interface:
<PRE>
void _exit( int code );
</PRE>
<P>
The NuttX exit() differs from ANSI exit() in the following ways:
</p>
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
STATUS task_restart( pid_t pid );
</PRE>
<P>
<B>Description:</B> This function "restarts" a task.
The task is first terminated and then reinitialized with same
ID, priority, original entry point, stack size, and parameters
it had when it was first started.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>pid</I>. The task ID of the task to delete. An ID of
zero signifies the calling task.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>
OK, or ERROR if the task ID is invalid or the task could
not be restarted.
This function can fail if:
(1) A pid of zero or the pid of the calling task is provided (functionality not implemented)
(2) The pid is not associated with any task known to the system.
</LI>
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following similar interface:
<PRE>
STATUS taskRestart (int tid);
</PRE>
<P>
The NuttX task_restart() differs from VxWorks' taskRestart() in the following ways:
</p>
<UL>
<LI>Restart of the currently running task is not supported.
<LI>The VxWorks description says that the ID, priority, etc. take
the value that they had when the task was <I>terminated</I>.
</UL>
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
<P>
<B>Function Prototype:</B>
<PRE>
#include <unistd.h>
pid_t getpid( void );
</PRE>
<P>
<B>Description:</B> This function returns the task ID of the
calling task. The task ID will be invalid if called at the interrupt
level.
<P>
<B>Input Parameters:</B> None.
<P>
<B>Returned Values:</B>
<UL>
<LI>The task ID of the calling task.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B>
Compatible with the POSIX interface of the same name.
<H2>2.2 <A NAME="Task_Schedule">Task Scheduling Interfaces</A></H2>
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
<p>
By default, NuttX performs strict priority scheduling: Tasks of higher
priority have exclusive access to the CPU until they become blocked.
At that time, the CPU is available to tasks of lower priority.
Tasks of equal priority are scheduled FIFO.
</p>
<p>
Optionally, a Nuttx task or thread can be configured with round-robin
scheduler. This is similar to priority scheduling <i>except</i> that
tasks with equal priority and share CPU time via <i>time-slicing</i>.
The time-slice interval is a constant determined by the configuration
setting <code>CONFIG_RR_INTERVAL</code>.
</p>
<p>
The OS interfaces described in the following paragraphs provide
a POSIX- compliant interface to the NuttX scheduler:
</p>
<ul>
<li><a href="#schedsetparam">2.2.1 sched_setparam</a></li>
<li><a href="#schedgetparam">2.2.2 sched_getparam</a></li>
<li><a href="#schedsetscheduler">2.2.3 sched_setscheduler</a></li>
<li><a href="#setgetscheduler">2.2.4 sched_getscheduler</a></li>
<li><a href="#sched_yield">2.2.5 sched_yield</a></li>
<li><a href="#schedgetprioritymax">2.2.6 sched_get_priority_max</a></li>
<li><a href="#schedgetprioritymin">2.2.7 sched_get_priority_min</a></li>
<li><a href="#schedgetrrinterval">2.2.8 sched_get_rr_interval</a></li>
</ul>
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
int sched_setparam(pid_t pid, const struct sched_param *param);
</pre>
<p>
<b>Description:</B>
This function sets the priority of the task specified by pid input parameter.
</p>
<p>
NOTE: Setting a task's priority to the same value has the similar
effect to <code>sched_yield()</code>: The task will be moved to after all
other tasks with the same priority.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>pid</code>.
The task ID of the task.
If <code>pid</code> is zero, the priority of the calling task is set.
</li>
<li>
<code>param</code>.
A structure whose member <code>sched_priority</code> is the integer priority.
The range of valid priority numbers is from <code>SCHED_PRIORITY_MIN</code> through <code>SCHED_PRIORITY_MAX</code>.
</li>
</ul>
<p>
<b>Returned Values:</b>
On success, sched_setparam() returns 0 (OK).
On error, -1 (ERROR) is returned, and errno is set appropriately.
</p>
<ul>
<li>
<code>EINVAL</code>.
The parameter <code>param</code> is invalid or does not make sense for the current scheduling policy.
</li>
<li>
<code>EPERM</code>.
The calling task does not have appropriate privileges.
</li>
<li>
<code>ESRCH</code>.
The task whose ID is <code>pid</code> could not be found.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<B>POSIX Compatibility:</B>
Comparable to the POSIX interface of the same name.
Differences from the full POSIX implementation include:
</p>
<ul>
<li>The range of priority values for the POSIX call is 0 to 255.</li>
</ul>
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
int sched_getparam (pid_t pid, struct sched_param *param);
</PRE>
<P>
<B>Description:</B> This function gets the scheduling priority
of the task specified by pid.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>pid</I>. The task ID of the task. If pid is zero, the
priority of the calling task is returned.
<li><code>param<code>.</li> A structure whose member sched_priority is the
integer priority. The task's priority is copied to the sched_priority
element of this structure.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) if successful, otherwise -1 (ERROR).
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="schedsetscheduler">2.2.3 sched_setscheduler</a></H3>
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
int sched_setscheduler (pid_t pid, int policy, const struct sched_param *param);
</PRE>
<P>
<B>Description:</B>
<i>sched_setscheduler()</i> sets both the scheduling policy
and the priority for the task identified by pid.
If pid equals zero, the scheduler of the calling
thread will be set.
The parameter 'param' holds the priority of the thread under the new policy.
</p>
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>pid</I>. The task ID of the task. If pid is zero, the
priority of the calling task is set.
<LI><I>policy</I>. Scheduling policy requested (either SCHED_FIFO
or SCHED_RR).
<li><code>param<code>.</li> A structure whose member sched_priority is the
integer priority. The range of valid priority numbers is from
SCHED_PRIORITY_MIN through SCHED_PRIORITY_MAX.
</UL>
<P>
<B>Returned Values:</B>
On success, <i>sched_setscheduler()</i> returns OK (zero). On
error, ERROR (-1) is returned, and errno is set appropriately:
</p>
<ul>
<li>EINVAL The scheduling policy is not one of the
recognized policies.</li>
<li>ESRCH The task whose ID is pid could not be found.</li>
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
int sched_getscheduler (pid_t pid);
</PRE>
<P>
<B>Description:</B>
<i>sched_getscheduler()</i> returns the scheduling policy
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
pid equals zero, the policy of the calling process will
be retrieved.
*
* Inputs:
*
* Return Value:
This function returns the current scheduling
policy.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>pid</I>.
The task ID of the task to query.
If pid is zero, the calling task is queried.
</LI>
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>
On success, <i>sched_getscheduler()</i> returns the policy for
the task (either SCHED_FIFO or SCHED_RR).
On error, ERROR (-1) is returned, and errno is set appropriately:
<ul>
<li>ESRCH The task whose ID is pid could not be found.</li>
</ul>
</li>
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<UL>
<LI>Does not report errors via <I>errno</I>.
</UL>
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
int sched_yield( void );
</PRE>
<P>
<B>Description:</B> This function forces the calling task to give
up the CPU (only to other tasks at the same priority).
<P>
<B>Input Parameters:</B> None.
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) or -1 (ERROR)
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="schedgetprioritymax">2.2.6 sched_get_priority_max</a></H3>
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
int sched_get_priority_max (int policy)
</PRE>
<P>
<B>Description:</B> This function returns the value of the highest
possible task priority for a specified scheduling policy.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>policy</I>. Scheduling policy requested.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>The maximum priority value or -1 (ERROR).
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="schedgetprioritymin">2.2.7 sched_get_priority_min</a></H3>
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
int sched_get_priority_min (int policy);
</PRE>
<P>
<B>Description:</B> This function returns the value of the lowest
possible task priority for a specified scheduling policy.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>policy</I>. Scheduling policy requested.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>The minimum priority value or -1 (ERROR)
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="schedgetrrinterval">2.2.8 sched_get_rr_interval</a></H3>
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
int sched_get_rr_interval (pid_t pid, struct timespec *interval);
</PRE>
<P>
<B>Description:</B>
<i>sched_rr_get_interval()</i> writes the timeslice interval
for task identified by <i>pid</i> into the timespec structure
pointed to by <i>interval</i>. If pid is zero, the timeslice
for the calling process is written into 'interval. The
identified process should be running under the SCHED_RR
scheduling policy.'
</p>
<P>
<B>Input Parameters:</B>
</p>
<UL>
<LI><I>pid</I>. The task ID of the task. If pid is zero, the
priority of the calling task is returned.
<LI><I>interval</I>. A structure used to return the time slice.
</UL>
<P>
<B>Returned Values:</B>
On success, sched_rr_get_interval() returns OK (0). On
error, ERROR (-1) is returned, and errno is set to:
</p>
<UL>
<LI>EFAULT Cannot copy to interval</LI>
<LI>EINVAL Invalid pid.</LI>
<LI>ENOSYS The system call is not yet implemented.</LI>
<LI>ESRCH The process whose ID is pid could not be found.</LI>
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
</P>
<H2>2.3 <A NAME="Task_Switch">Task Switching Interfaces</A></H2>
<ul>
<li><a href="#schedlock">2.3.1 sched_lock</a></li>
<li><a href="#schedunlock">2.3.2 sched_unlock</a></li>
<li><a href="#schedlockcount">2.3.3 sched_lockcount</a></li>
</ul>
<H3><a name="schedlock">2.3.1 sched_lock</a></H3>
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
STATUS sched_lock( void );
</PRE>
<P>
<B>Description:</B> This function disables context switching by
Disabling addition of new tasks to the ready-to-run task list.
The task that calls this function will be the only task that is
allowed to run until it either calls sched_unlock (the appropriate
number of times) or until it blocks itself.
<P>
<B>Input Parameters:</B> None.
<P>
<B>Returned Values:</B>
<UL>
<LI>OK or ERROR.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the comparable interface:
<PRE>
STATUS taskLock( void );
</PRE>
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
STATUS sched_unlock( void );
</PRE>
<P>
<B>Description:</B> This function decrements the preemption lock
count. Typically this is paired with sched_lock() and concludes
a critical section of code. Preemption will not be unlocked until
sched_unlock() has been called as many times as sched_lock().
When the lockCount is decremented to zero, any tasks that were
eligible to preempt the current task will execute.
<P>
<B>Input Parameters:</B> None.
<P>
<B>Returned Values:</B>
<UL>
<LI>OK or ERROR.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the comparable interface:
<PRE>
STATUS taskUnlock( void );
</PRE>
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
<P>
<B>Function Prototype:</B>
<PRE>
#include <sched.h>
sint32 sched_lockcount( void )
</PRE>
<P>
<B>Description:</B> This function returns the current value of
the lockCount. If zero, preemption is enabled; if non-zero, this
value indicates the number of times that sched_lock() has been called
on this thread of execution.
<P>
<B>Input Parameters:</B> None.
<P>
<B>Returned Values:</B>
<UL>
<LI>The current value of the lockCount.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> None.
<HR>
<H2>2.4 <A NAME="Message_Queue">Named Message Queue Interfaces</A></H2>
<p>
NuttX supports POSIX named message queues for intertask communication.
Any task may send or receive messages on named message queues.
Interrupt handlers may send messages via named message queues.
</p>
<ul>
<li><a href="#mqopen">2.4.1 mq_open</a></li>
<li><a href="#mqclose">2.4.2 mq_close</a></li>
<li><a href="#mqunlink">2.4.3 mq_unlink</a></li>
<li><a href="#mqsend">2.4.4 mq_send</a></li>
<li><a href="#mqreceive">2.4.5 mq_receive</a></li>
<li><a href="#mqnotify">2.4.6 mq_notify</a></li>
<li><a href="#mqsetattr">2.4.7 mq_setattr</a></li>
<li><a href="#mqgetattr">2.4.8 mq_getattr</a></li>
</ul>
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
<P>
<B>Function Prototype:</B>
<PRE>
#include <mqueue.h>
mqd_t mq_open( const char *mqName, int oflags, ... );
</PRE>
<P>
<B>Description:</B> This function establish a connection between
a named message queue and the calling task. After a successful
call of mq_open(), the task can reference the message queue using
the address returned by the call. The message queue remains usable
until it is closed by a successful call to mq_close().
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>mqName</I>. Name of the queue to open
<LI><I>oflags</I>. Open flags. These may be any combination of:
<UL>
<LI><I>O_RDONLY</I>. Open for read access.
<LI><I>O_WRONLY</I>. Open for write access.
<LI><I>O_RDWR</I>. Open for both read & write access.
<LI><I>O_CREAT</I>. Create message queue if it does not already
exist.
<LI><I>O_EXCL</I>. Name must not exist when opened.
<LI><I>O_NONBLOCK</I>. Don't wait for data.
</UL>
<LI><I>... Optional parameters</I>.
When the O_CREAT flag is specified, POSIX requires that a third
and fourth parameter be supplied:
<UL>
<LI><I>mode</I>. The mode parameter is of type mode_t. In the POSIX
specification, this mode value provides file permission bits for the
message queue. This parameter is required but not used in the present
implementation.
<LI><I>attr</I>. A pointer to an mq_attr that is provided to initialize.
the message queue. If attr is NULL, then the messages queue is created
with implementation-defined default message queue attributes. If attr is
non-NULL, then the message queue mq_maxmsg attribute is set to the
corresponding value when the queue is created. The mq_maxmsg attribute
determines the maximum number of messages that can be queued before
addition attempts to send messages on the message queue fail or cause the
sender to block; the mq_msgsize attribute determines the maximum size of a
message that can be sent or received. Other elements of attr are ignored
(i.e, set to default message queue attributes).
</UL>
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>A message queue descriptor or -1 (ERROR)
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX interface
of the same name.
Differences from the full POSIX implementation include:
<UL>
<LI>The mq_msgsize attributes determines the maximum size of a message that
may be sent or received. In the present implementation, this maximum
message size is limited at 22 bytes.
</UL>
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
<P>
<B>Function Prototype:</B>
<PRE>
#include <mqueue.h>
int mq_close( mqd_t mqdes );
</PRE>
<P>
<B>Description:</B> This function is used to indicate that the
calling task is finished with the specified message queued mqdes.
The mq_close() deallocates any system resources allocated by the
system for use by this task for its message queue.
<P>
If the calling task has attached a notification request to the message
queue via this <I>mqdes</I> (see mq_notify()), this attachment will be
removed and the message queue is available for another task to attach
for notification.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>mqdes</I>. Message queue descriptor.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) if the message queue is closed successfully, otherwise,
-1 (ERROR).
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<UL>
<LI>The behavior of a task that is blocked on either a mq_send() or
mq_receive() is undefined when mq_close() is called.
<LI>The result of using this message queue descriptor after successful
return from mq_close() is undefined.
</UL>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX interface
of the same name.
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
<P>
<B>Function Prototype:</B>
<PRE>
#include <mqueue.h>
int mq_unlink( const char *mqName );
</PRE>
<P>
<B>Description:</B> This function removes the message queue named
by "mqName." If one or more tasks have the message queue
open when mq_unlink() is called, removal of the message queue
is postponed until all references to the message queue have been
closed.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>mqName</I>. Name of the message queue
</UL>
<P>
<B>Returned Values:</B> None.
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
<P>
<B>Function Prototype:</B>
<PRE>
#include <mqueue.h>
int mq_send( mqd_t mqdes, const void *msg, size_t msgLen, int msgPrio );
</PRE>
<P>
<B>Description:</B> This function adds the specified message (msg)
to the message queue (mqdes). The "msgLen" parameter
specifies the length of the message in bytes pointed to by "msg."
This length must not exceed the maximum message length from the
mq_getattr().
<P>
If the message queue is not full, mq_send() will in the message
in the message queue at the position indicated by the "msgPrio"
argument. Messages with higher priority will be inserted before
lower priority messages. The value of "msgPrio" must
not exceed MQ_PRIO_MAX.
<P>
If the specified message queue is full and O_NONBLOCK is not
set in the message queue, then mq_send() will block until space
becomes available to the queue the message.
<P>
If the message queue is full and osNON_BLOCK is set, the message
is not queued and ERROR is returned.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>mqdes</I>. Message queue descriptor
<LI><I>msg</I>. Message to send
<LI><I>msgLen</I>. The length of the message in bytes
<LI><I>msgPrio</I>. The priority of the message
</UL>
<P>
<B>Returned Values:</B> None.
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<UL>
<LI>Control is not returned if a signal is received.
</UL>
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
<P>
<B>Function Prototype:</B>
<PRE>
#include <mqueue.h>
int mq_receive( mqd_t mqdes, void *msg, size_t msgLen, int *msgPrio );
</PRE>
<P>
<B>Description:</B> This function receives the oldest of the highest
priority messages from the message queue specified by "mqdes."
If the size of the buffer in bytes (msgLen) is less than the "mq_msgsize"
attribute of the message queue, mq_receive will return an error.
Otherwise, the select message is removed from the queue and copied
to "msg."
<P>
If the message queue is empty and O_NONBLOCK was not set, mq_receive()
will block until a message is added to the message queue. If more
than one task is waiting to receive a message, only the task with
the highest priority that has waited the longest will be unblocked.
<P>
If the queue is empty and O_NONBLOCK is set, ERROR will be
returned.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>mqdes</I>. Message Queue Descriptor
<LI><I>msg</I>. Buffer to receive the message
<LI><I>msgLen</I>. Size of the buffer in bytes
<LI><I>msgPrio</I>. If not NULL, the location to store message
priority.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>Length of the selected message in bytes, otherwise -1 (ERROR).
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<UL>
<LI>Control is not returned if a signal is received.
</UL>
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
<P>
<B>Function Prototype:</B>
<PRE>
#include <mqueue.h>
int mq_notify( mqd_t mqdes, const struct sigevent *notification );
</PRE>
<P>
<B>Description:</B> If the "notification" input parameter
is not NULL, this function connects the task with the message queue such
that the specified signal will be sent to the task whenever the message
changes from empty to non-empty. One notification can be attached
to a message queue.
<P>
If "notification" is NULL, the attached notification
is detached (if it was held by the calling task) and the queue
is available to attach another notification.
<P>
When the notification is sent to the registered task, its registration
will be removed. The message queue will then be available for
registration.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>mqdes</I>. Message queue descriptor
<LI><I>notification</I>. Real-time signal structure containing:
<UL>
<LI><I>sigev_notify</I>. Should be osSIGEV_SIGNAL (but actually
ignored)
<LI><I>sigev_signo</I>. The signo to use for the notification
<LI><I>sigev_value</I>. Value associated with the signal
</UL>
</UL>
<P>
<B>Returned Values:</B> None.
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX interface
of the same name.
Differences from the full POSIX implementation include:
<UL>
<LI>The notification signal will be sent to the registered task even if
another task is waiting for the message queue to become non-empty. This is
inconsistent with the POSIX specification which states, "If a process
has registered for notification of message arrival at a message queue and
some process is blocked in <I>mq_receive</I> waiting to receive a message
when a message arrives at the queue, the arriving message shall satisfy the
appropriate <I>mq_receive()</I> ... The resulting behavior is as if the
message queue remains empty, and no notification shall be sent."
</UL>
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
<P>
<B>Function Prototype:</B>
<PRE>
#include <mqueue.h>
int mq_setattr( mqd_t mqdes, const struct mq_attr *mqStat,
struct mq_attr *oldMqStat);
</PRE>
<P>
<B>Description:</B> This function sets the attributes associated
with the specified message queue "mqdes." Only the "O_NONBLOCK"
bit of the "mq_flags" can be changed.
<P>
If "oldMqStat" is non-null, mq_setattr() will store
the previous message queue attributes at that location (just as
would have been returned by mq_getattr()).
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>mqdes</I>. Message queue descriptor
<LI><I>mqStat</I>. New attributes
<LI><I>oldMqState</I>. Old attributes
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) if attributes are set successfully, otherwise -1
(ERROR).
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
<P>
<B>Function Prototype:</B>
<PRE>
#include <mqueue.h>
int mq_getattr( mqd_t mqdes, struct mq_attr *mqStat);
</PRE>
<P>
<B>Description:</B> This functions gets status information and
attributes associated with the specified message queue.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>mqdes</I>. Message queue descriptor
<LI><I>mqStat</I>. Buffer in which to return attributes. The returned
attributes include:
<UL>
<LI><I>mq_maxmsg</I>. Max number of messages in queue.
<LI><I>mq_msgsize</I>. Max message size.
<LI><I>mq_flags</I>. Queue flags.
<LI><I>mq_curmsgs</I>. Number of messages currently in queue.
</UL>
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) if attributes provided, -1 (ERROR) otherwise.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H2>2.5 <A NAME="Semaphores">Counting Semaphore Interfaces</A></H2>
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
<p>
<b>Semaphores</b>. Semaphores are the basis for
synchronization and mutual exclusion in NuttX. NuttX supports
POSIX semaphores.
</p>
<p>
Semaphores are the preferred mechanism for gaining exclusive access to a
resource. sched_lock() and sched_unlock() can also be used for this purpose.
However, sched_lock() and sched_unlock() have other undesirable side-affects
in the operation of the system: sched_lock() also prevents higher-priority
tasks from running that do not depend upon the semaphore-managed resource
and, as a result, can adversely affect system response times.
</p>
<p>
<B>Priority Inversion</B>. Proper use of semaphores avoids the issues of
sched_lock(). However, consider the following example:
<OL>
<LI>Some low-priority task, <I>Task C</I>, acquires a semphore in order to
get exclusive access to a protected resource.</li>
<LI><I>Task C</I> is suspended to allow some high-priority task,</li>
<I>Task A</I>, to execute.</li>
<LI><I>Task A</I> attempts to acquire the semaphore held by <I>Task C</I> and
gets blocked until <I>Task C</I> relinquishes the semaphore.</li>
<LI><I>Task C</I> is allowed to execute again, but gets suspended by some
medium-priority <I>Task B</I>.</li>
</OL>
<p>
At this point, the high-priority <I>Task A</I> cannot execute until
<I>Task B</I> (and possibly other medium-priority tasks) completes and until
<I>Task C</I> relinquishes the semaphore. In effect, the high-priority task,
<I>Task A</I> behaves as though it were lower in priority than the
low-priority task, <I>Task C</I>! This phenomenon is called <I>priority
inversion</I>.
</p>
<p>
Some operating systems avoid priority inversion by <I>automatically</I>
increasing the priority of the low-priority <I>Task C</I> (the operable
buzz-word for this behavior is <I>priority inheritance</I>). NuttX does not
support this behavior. As a consequence, it is left to the designer to
provide implementations that will not suffer from priority inversion.
The designer may, as examples:
</p>
<UL>
<LI>Implement all tasks that need the semphore-managed resources at the
same priority level,</li>
<LI>Boost the priority of the low-priority task before the semaphore is
acquired, or</li>
<LI>Use sched_lock() in the low-priority task.</li>
</UL>
<p>
POSIX semaphore interfaces:
</p>
<ul>
<li><a href="#seminit">2.5.1 sem_init</a></li>
<li><a href="#semdestroy">2.5.2 sem_destroy</a></li>
<li><a href="#semopen">2.5.3 sem_open</a></li>
<li><a href="#semclose">2.5.4 sem_close</a></li>
<li><a href="#semunlink">2.5.5 sem_unlink</a></li>
<li><a href="#semwait">2.5.6 sem_wait</a></li>
<li><a href="#semtrywait">2.5.7 sem_trywait</a></li>
<li><a href="#sempost">2.5.8 sem_post</a></li>
<li><a href="#semgetvalue">2.5.9 sem_getvalue</a></li>
</ul>
<H3><a name="seminit">2.5.1 sem_init</a></H3>
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
int sem_init ( sem_t *sem, int pshared, unsigned int value );
</PRE>
<P>
<B>Description:</B> This function initializes the UN-NAMED semaphore
sem. Following a successful call to sem_init(), the semaphore
may be used in subsequent calls to sem_wait(), sem_post(), and
sem_trywait(). The semaphore remains usable until it is destroyed.
<P>
Only <I>sem</I> itself may be used for performing synchronization. The
result of referring to copies of <I>sem</I> in calls to <I>sem_wait()</I>,
<I>sem_trywait()</I>, <I>sem_post()</I>, and <I>sem_destroy()</I>, is
not defined.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>sem</I>. Semaphore to be initialized
<LI><I>pshared</I>. Process sharing (not used)
<LI><I>value</I>. Semaphore initialization value
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if unsuccessful.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<UL>
<LI>pshared is not used.
</UL>
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
int sem_destroy ( sem_t *sem );
</PRE>
<P>
<B>Description:</B> This function is used to destroy the un-named semaphore
indicated by <I>sem</I>. Only a semaphore that was created using
<I>sem_init()</I> may be destroyed using <I>sem_destroy()</I>. The effect
of calling <I>sem_destroy()</I> with a named semaphore is undefined. The
effect of subsequent use of the semaphore <I>sem</I> is undefined until
<I>sem</I> is re-initialized by another call to <I>sem_init()</I>.
<P>
The effect of destroying a semaphore upon which other tasks are currently
blocked is undefined.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>sem</I>. Semaphore to be destroyed.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if unsuccessful.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
sem_t *sem_open ( const char *name, int oflag, ...);
</PRE>
<P>
<B>Description:</B> This function establishes a connection between
named semaphores and a task. Following a call to sem_open() with
the semaphore name, the task may reference the semaphore associated
with name using the address returned by this call. The semaphore
may be used in subsequent calls to sem_wait(), sem_trywait(),
and sem_post(). The semaphore remains usable until the semaphore
is closed by a successful call to sem_close().
<P>
If a task makes multiple calls to sem_open() with the same name,
then the same semaphore address is returned (provided there have
been no calls to sem_unlink()).
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>name</I>. Semaphore name
<LI><I>oflag</I>. Semaphore creation options. This may one of
the following bit settings:
<UL>
<LI><I>oflag</I> = 0: Connect to the semaphore only if it already
exists.
<LI><I>oflag</I> = O_CREAT: Connect to the semaphore if it exists,
otherwise create the semaphore.
<LI><I>oflag</I> = O_CREAT with O_EXCL (O_CREAT|O_EXCL): Create
a new semaphore unless one of this name already exists.
</UL>
<LI>... Optional parameters.
NOTE: When the O_CREAT flag is specified, POSIX requires that a third
and fourth parameter be supplied:
<UL>
<LI><I>mode</I>. The mode parameter is of type mode_t.
This parameter is required but not used in the present
implementation.
<LI><I>value</I>. The value parameter is type unsigned int. The semaphore
is created with an initial value of <I>value</I>. Valid initial values for
semaphores must be less than or equal to <I>SEM_VALUE_MAX</I> (defined in
<CODE>include/limits.h</CODE>).
</UL>
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>A pointer to sem_t or -1 (ERROR) if unsuccessful.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<UL>
<LI>Treatment of links/connections is highly simplified. It is
just a counting semaphore.
</UL>
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
int sem_close ( sem_t *sem );
</PRE>
<P>
<B>Description:</B> This function is called to indicate that the
calling task is finished with the specified named semaphore, sem.
The sem_close() deallocates any system resources allocated by
the system for this named semaphore.
<P>
If the semaphore has not been removed with a call to sem_unlink(),
then sem_close() has no effect on the named semaphore. However,
when the named semaphore has been fully unlinked, the semaphore
will vanish when the last task closes it.
<P>
Care must be taken to avoid risking the deletion of a semaphore
that another calling task has already locked.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>sem</I>. Semaphore descriptor
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if unsuccessful.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<UL>
<LI>Care must be taken to avoid deletion of a semaphore that another task
has already locked.
<LI>sem_close() must not be called with an un-named semaphore.
</UL>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
int sem_unlink ( const char *name );
</PRE>
<P>
<B>Description:</B> This function will remove the semaphore named by the
input name parameter. If one or more tasks have the semaphore named by
name oepn when sem_unlink() is called, destruction of the semaphore will
be postponed until all references have been destroyed by calls to
sem_close().
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>name</I>. Semaphore name
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if unsuccessful.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<UL>
<LI>Care must be taken to avoid deletion of a semaphore that another task
has already locked.
<LI>sem_unlink() must not be called with an un-named semaphore.
</UL>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<UL>
<LI>Treatment of links/connections is highly simplified. It is
just a counting semaphore.
<LI>Calls to sem_open() to re-create or re-connect to the semaphore may
refer to the same semaphore; POSIX specifies that a new semaphore with the
same name should be created after sem_unlink() is called.
</UL>
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
int sem_wait ( sem_t *sem );
</PRE>
<P>
<B>Description:</B> This function attempts to lock the semaphore
referenced by sem. If the semaphore as already locked by another
task, the calling task will not return until it either successfully acquires
the lock or the call is interrupted by a signal.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>sem</I>. Semaphore descriptor.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) is unsuccessful
</UL>
<P>
If <I>sem_wait</I> returns -1 (ERROR) then the cause of the failure
will be indicated by the thread-specific <I>errno</I> value (a pointer
to this value can be obtained using <I>get_errno_ptr()</I>). The following
lists the possible values for <I>errno</I>:
<P>
<UL>
<LI><I>EINVAL</I>: Indicates that the <I>sem</I> input parameter is
not valid.
<LI><I>EINTR</I>: Indicates that the wait was interrupt by a signal
received by this task. In this case, the semaphore has not be acquired.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
int sem_trywait ( sem_t *sem );
</PRE>
<P>
<B>Description:</B> This function locks the specified semaphore
only if the semaphore is currently not locked. In any event, the call
returns without blocking.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>sem</I>. The semaphore descriptor
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) or -1 (ERROR) if unsuccessful
</UL>
If <I>sem_wait</I> returns -1 (ERROR) then the cause of the failure
will be indicated by the thread-specific <I>errno</I> value (a pointer
to this value can be obtained using <I>get_errno_ptr()</I>). The following
lists the possible values for <I>errno</I>:
<P>
<UL>
<LI><I>EINVAL</I>: Indicates that the <I>sem</I> input parameter is
not valid.
<LI><I>EAGAIN</I>: Indicates that the semaphore was not acquired.
</UL>
<P>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
int sem_post ( sem_t *sem );
</PRE>
<P>
<B>Description:</B> When a task has finished with a semaphore,
it will call sem_post(). This function unlocks the semaphore referenced
by <I>sem</I> by performing the semaphore unlock operation.
<P>
If the semaphore value resulting from this operation is positive, then
no tasks were blocked waiting for the semaphore to become unlocked;
The semaphore value is simply incremented.
<P>
If the value of the semaphore resulting from this operation is zero, then
on of the tasks blocked waiting for the semaphore will be allowed to
return successfully from its call to <I>sem_wait()</I>.
<P>
<B>NOTE</B>: <I>sem_post()</I> may be called from an interrupt handler.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>sem</I>. Semaphore descriptor
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) or -1 (ERROR) if unsuccessful.
</UL>
<P>
<B>Assumptions/Limitations:</B> This function cannot be called
from an interrupt handler. It assumes the currently executing
task is the one that is performing the unlock.
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
<P>
<B>Function Prototype:</B>
<PRE>
#include <semaphore.h>
int sem_getvalue ( sem_t *sem, int *sval );
</PRE>
<P>
<B>Description:</B> This function updates the location referenced
by sval argument to have the value of the semaphore referenced
by sem without effecting the state of the semaphore. The updated
value represents the actual semaphore value that occurred at some
unspecified time during the call, but may not reflect the actual
value of the semaphore when it is returned to the calling task.
<P>
If sem is locked, the value return by sem_getvalue() will either
be zero or a negative number whose absolute value represents the
number of tasks waiting for the semaphore.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>sem</I>. Semaphore descriptor
<LI><I>sval</I>. Buffer by which the value is returned
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) or -1 (ERROR) if unsuccessful.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<HR>
<H2>2.6 <A NAME="Watchdogs">Watchdog Timer Interfaces</A></H2>
<P>
NuttX provides a general watchdog timer facility.
This facility allows the NuttX user to specify a watchdog timer function
that will run after a specified delay.
The watchdog timer function will run in the context of the timer interrupt handler.
Because of this, a limited number of NuttX interfaces are available to he watchdog timer function.
However, the watchdog timer function may use mq_send(), sigqueue(), or kill() to communicate with NuttX tasks.
</p>
<ul>
<li><a href="#wdcreate">2.6.1 wd_create</a></li>
<li><a href="#wddelete">2.6.2 wd_delete</a></li>
<li><a href="#wdstart">2.6.3 wd_start</a></li>
<li><a href="#wdcancel">2.6.4 wd_cancel</a></li>
<li><a href="#wdgettime">2.6.5 wd_gettime</a></li>
<P>
<B>Function Prototype:</B>
<PRE>
#include <wdog.h>
WDOG_ID wd_create (void);
</PRE>
<P>
<B>Description:</B> The wd_create function will create a watchdog
by allocating the appropriate resources for the watchdog.
<P>
<B>Input Parameters:</B> None.
<P>
<B>Returned Values:</B>
<UL>
<LI>Pointer to watchdog that may be used as a handle in subsequent
NuttX calls (i.e., the watchdog ID), or NULL if insufficient resources
are available to create the watchdogs.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following comparable interface:
<PRE>
WDOG_ID wdCreate (void);
</PRE>
<P>
Differences from the VxWorks interface include:
<UL>
<LI>The number of available watchdogs is fixed (configured at
initialization time).
</UL>
<P>
<B>Function Prototype:</B>
<PRE>
#include <wdog.h>
</PRE>
<P>
<B>Description:</B> The wd_delete function will deallocate a
watchdog. The watchdog will be removed from the timer queue if
has been started.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>wdog</I>. The watchdog ID to delete. This is actually a
pointer to a watchdog structure.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>OK or ERROR
</UL>
<P>
<B>Assumptions/Limitations:</B> It is the responsibility of the
caller to assure that the watchdog is inactive before deleting
it.
<P>
<B> POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following comparable interface:
<PRE>
</PRE>
<P>
Differences from the VxWorks interface include:
<UL>
<LI>Does not make any checks to see if the watchdog is being used
before de-allocating it (i.e., never returns ERROR).
</UL>
<P>
<B>Function Prototype:</B>
<PRE>
#include <wdog.h>
STATUS wd_start( WDOG_ID wdog, int delay, wdentry_t wdentry,
intt argc, ....);
</PRE>
<P>
<B>Description:</B> This function adds a watchdog to the timer
queue. The specified watchdog function will be called from the
interrupt level after the specified number of ticks has elapsed.
Watchdog timers may be started from the interrupt level.
<P>
Watchdog times execute in the context of the timer interrupt handler, but
with the PIC/PID address environment that was in place when wd_start()
was called.
<P>
Watchdog timers execute only once.
<P>
To replace either the timeout delay or the function to be executed,
call wd_start again with the same wdog; only the most recent
wd_start() on a given watchdog ID has any effect.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>delay</I>. Delay count in clock ticks
<LI><I>wdentry</I>. Function to call on timeout
<LI><I>argc</I>. The number of uint32 parameters to pass to wdentry.
<LI><I>...</I>. uint32 size parameters to pass to wdentry
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>OK or ERROR
</UL>
<P>
<B>Assumptions/Limitations:</B> The watchdog routine runs in the
context of the timer interrupt handler and is subject to all ISR
restrictions.
<P>
<B> POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following comparable interface:
<PRE>
STATUS wdStart (WDOG_ID wdog, int delay, FUNCPTR wdentry, int parameter);
</PRE>
<P>
Differences from the VxWorks interface include:
<UL>
<LI>The present implementation supports multiple parameters passed
to wdentry; VxWorks supports only a single parameter. The maximum
number of parameters is determined by
<P>
<B>Function Prototype:</B>
<PRE>
#include <wdog.h>
</PRE>
<P>
<B>Description:</B> This function cancels a currently running
watchdog timer. Watchdog timers may be canceled from the interrupt
level.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>wdog</I>. ID of the watchdog to cancel.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>OK or ERROR
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> This is a NON-POSIX interface.
VxWorks provides the following comparable interface:
<PRE>
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
<h3><a name="wdgettime">2.6.5 wd_gettime</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <wdog.h>
Sint wd_gettime(WDOG_ID wdog);
</pre>
<p>
<b>Description:</b>
This function returns the time remaining before the the specified watchdog expires.
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><code>wdog</code>. Identifies the watchdog that the request is for.</li>
</ul>
</p>
<p>
<b>Returned Value:</b>
The time in system ticks remaining until the watchdog time expires. Zero
means either that wdog is not valid or that the wdog has already expired.
</p>
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
<H2><A NAME="ClocksNTimers">2.7 Clocks and Timers</A></H2>
<ul>
<li><a href="#clocksettime">2.7.1 clock_settime</a></li>
<li><a href="#clockgettime">2.7.2 clock_gettime</a></li>
<li><a href="#clockgetres">2.7.3 clock_getres</a></li>
<li><a href="#mktime">2.7.4 mktime</a></li>
<li><a href="#gmtimer">2.7.5 gmtime_r</a></li>
<li><a href="#localtimer">2.7.6 localtime_r</a></li>
<li><a href="#timercreate">2.7.7 timer_create</a></li>
<li><a href="#timerdelete">2.7.8 timer_delete</a></li>
<li><a href="#timersettime">2.7.9 timer_settime</a></li>
<li><a href="#timergettime">2.7.10 timer_gettime</a></li>
<li><a href="#timergetoverrun">2.7.11 timer_getoverrun</a></li>
</ul>
<H3><a name="clocksettime">2.7.1 clock_settime</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_settime(clockid_t clockid, const struct timespec *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_settime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>Exxx</code>.</li>
</ul>
<H3><a name="clockgettime">2.7.2 clock_gettime</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_gettime(clockid_t clockid, struct timespec *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_gettime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>Exxx</code>.</li>
</ul>
<H3><a name="clockgetres">2.7.3 clock_getres</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_getres(clockid_t clockid, struct timespec *res);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_getres()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>Exxx</code>.</li>
</ul>
<H3><a name="mktime">2.7.4 mktime</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
time_t mktime(struct tm *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>mktime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>Exxx</code>.</li>
</ul>
<H3><a name="gmtimer">2.7.5 gmtime_r</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
struct tm *gmtime_r(const time_t *clock, struct tm *result);
</pre>
<p>
<b>Description:</b>
</p>
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>gmtime_r()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>Exxx</code>.</li>
</ul>
<H3><a name="localtimer">2.7.6 localtime_r</A></H3>
<pre>
#include <time.h>
#define localtime_r(c,r) gmtime_r(c,r)
</pre>
<H3><a name="timercreate">2.7.7 timer_create</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);
</pre>
<p>
<b>Description:</b>
The <code>timer_create()</code> function creates per-thread timer using the specified
clock, <code>clock_id</code>, as the timing base.
The <code>timer_create()</code> function returns, in
the location referenced by <code>timerid</code>, a timer ID of type timer_t used to identify
the timer in timer requests.
This timer ID is unique until the timer is deleted.
The particular clock, <code>clock_id<code>, is defined in <code><time.h><code>.
The timer whose ID is returned will be in a disarmed state upon return from
<code>timer_create()</code>.
</p>
<p>
The <code>evp</code> argument, if non-NULL, points to a <code>sigevent</code> structure.
This structure is allocated by the called and defines the asynchronous notification to occur.
If the <code>evp</code> argument is NULL, the effect is as if the <code>evp</code> argument pointed to
a <code>sigevent</code> structure with the <code>sigev_notify</code> member having the value <code>SIGEV_SIGNAL</code>,
the <code>sigev_signo</code> having a default signal number, and the <code>sigev_value</code> member
having the value of the timer ID.
</p>
<p>
Each implementation defines a set of clocks that can be used as timing bases
for per-thread timers. All implementations shall support a <code>clock_id</code> of
<code>CLOCK_REALTIME</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>clockid</code>. Specifies the clock to use as the timing base.
Must be <code>CLOCK_REALTIME</code>.</li>
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
<li><code>evp</code>. Refers to a user allocated sigevent structure that defines the
asynchronous notification. evp may be NULL (see above).</li>
<li><code>timerid</code>. The pre-thread timer created by the call to timer_create().</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If the call succeeds, <code>timer_create()</code> will return 0 (<code>OK</code>) and update the
location referenced by <code>timerid</code> to a <code>timer_t</code>, which can be passed to the
other per-thread timer calls. If an error occurs, the function will return
a value of -1 (<code>ERROR</code>) and set errno to indicate the error.
</p>
<ul>
<li><code>EAGAIN</code>. The system lacks sufficient signal queuing resources to honor the
request.</li>
<li><code>EAGAIN</code>. The calling process has already created all of the timers it is
allowed by this implementation.</li>
<li><code>EINVAL</code>. The specified clock ID is not defined.</li>
<li><code>ENOTSUP</code>. The implementation does not support the creation of a timer attached
to the CPU-time clock that is specified by clock_id and associated with a
thread different thread invoking timer_create().</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>Only <code>CLOCK_REALTIME</code> is supported for the <code>clockid</code> argument.</li>
</ul>
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
<H3><a name="timerdelete">2.7.8 timer_delete</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_delete(timer_t timerid);
</pre>
<p>
<b>Description:</b>
The <code>timer_delete()</code> function deletes the specified timer, <code>timerid</code>, previously
created by the <code>timer_create()</code> function.
If the timer is armed when <code>timer_delete()</code> is called, the timer will be automatically disarmed before
removal.
The disposition of pending signals for the deleted timer is unspecified.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>.
The pre-thread timer, previously created by the call to timer_create(), to be deleted.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>timer_delete()</I> function will return zero (<I>OK</I>).
Otherwise, the function will return a value of -1 (ERROR) and set errno to indicate the error:
</p>
<ul>
<li><code>EINVAL</code>. The timer specified timerid is not valid.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
<H3><a name="timersettime">2.7.9 timer_settime</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
struct itimerspec *ovalue);
</pre>
<p>
<b>Description:</b>
The <code>timer_settime()</code> function sets the time until the next expiration of the
timer specified by <code>timerid</code> from the <code>it_value</code> member of the value argument
and arm the timer if the <code>it_value</code> member of value is non-zero. If the
specified timer was already armed when <code>timer_settime()</code> is called, this call
will reset the time until next expiration to the value specified. If the
<code>it_value</code> member of value is zero, the timer will be disarmed. The effect
of disarming or resetting a timer with pending expiration notifications is
unspecified.
</p>
<p>
If the flag <code>TIMER_ABSTIME</code> is not set in the argument flags, <code>timer_settime()</code>
will behave as if the time until next expiration is set to be equal to the
interval specified by the <code>it_value</code> member of value. That is, the timer will
expire in <code>it_value</code> nanoseconds from when the call is made. If the flag
<code>TIMER_ABSTIME</code> is set in the argument flags, <code>timer_settime()</code> will behave as
if the time until next expiration is set to be equal to the difference between
the absolute time specified by the <code>it_value</code> member of value and the current
value of the clock associated with <code>timerid</code>. That is, the timer will expire
when the clock reaches the value specified by the <code>it_value</code> member of value.
If the specified time has already passed, the function will succeed and the
expiration notification will be made.
</p>
<p>
The reload value of the timer will be set to the value specified by the
<code>it_interval</code> member of value. When a timer is armed with a non-zero
<code>it_interval</code>, a periodic (or repetitive) timer is specified.
</p>
<p>
Time values that are between two consecutive non-negative integer multiples
of the resolution of the specified timer will be rounded up to the larger
multiple of the resolution. Quantization error will not cause the timer to
expire earlier than the rounded time value.
</p>
<p>
If the argument <code>ovalue</code> is not NULL, the t<code>imer_settime()</code> function will store,
in the location referenced by <code>ovalue</code>, a value representing the previous
amount of time before the timer would have expired, or zero if the timer was
disarmed, together with the previous timer reload value. Timers will not
expire before their scheduled time.
</p>
<b>NOTE:</b>At present, the <code>ovalue</code> argument is ignored.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. The pre-thread timer, previously created by the call to timer_create(), to be be set.</li>
<li><code>flags</code>. Specifie characteristics of the timer (see above)</li>
<li><code>value</code>. Specifies the timer value to set</li>
<li><code>ovalue</code>. A location in which to return the time remaining from the previous timer setting (ignored).</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If the timer_gettime() succeeds, a value of 0 (OK) will be returned.
If an error occurs, the value -1 (ERROR) will be returned, and errno set to indicate the error.
</p>
<ul>
<li><code>EINVAL</code>. The timerid argument does not correspond to an ID returned by timer_create() but not yet deleted by timer_delete().</li>
<li><code>EINVAL</code>. A value structure specified a nanosecond value less than zero or greater than or equal to 1000 million,
and the it_value member of that structure did not specify zero seconds and nanoseconds.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>The <code>ovalue</code> argument is ignored.</li>
</ul>
<H3><a name="timergettime">2.7.10 timer_gettime</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_gettime(timer_t timerid, struct itimerspec *value);
</pre>
<p>
<b>Description:</b>
The <code>timer_gettime()</code> function will store the amount of time until the
specified timer, <code>timerid</code>, expires and the reload value of the timer into the
space pointed to by the <code>value</code> argument. The <code>it_value</code> member of this structure
will contain the amount of time before the timer expires, or zero if the timer
is disarmed. This value is returned as the interval until timer expiration,
even if the timer was armed with absolute time. The <code>it_interval</code> member of
<code>value</code> will contain the reload value last set by <code>timer_settime()</code>.
</p>
<p>
Due to the asynchronous operation of this function, the time reported
by this function could be significantly more than that actual time
remaining on the timer at any time.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. Specifies pre-thread timer, previously created by the call to
t<code>imer_create()</code>, whose remaining count will be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>timer_gettime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>EINVAL</code>.
The <code>timerid</code> argument does not correspond to an ID returned by
<code>timer_create()</code> but not yet deleted by <code>timer_delete()</code>.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
<H3><a name="timergetoverrun">2.7.11 timer_getoverrun</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_getoverrun(timer_t timerid);
</pre>
<p>
<b>Description:</b>
Only a single signal will be queued to the process for a given timer at any
point in time. When a timer for which a signal is still pending expires, no
signal will be queued, and a timer overrun will occur. When a timer
expiration signal is delivered to or accepted by a process, if the
implementation supports the <i>Realtime Signals Extension</i>, the
<code>timer_getoverrun()</code> function will return the timer expiration overrun count for
the specified timer. The overrun count returned contains the number of extra
timer expirations that occurred between the time the signal was generated
(queued) and when it was delivered or accepted, up to but not including an
implementation-defined maximum of <code>DELAYTIMER_MAX</code>. If the number of such
extra expirations is greater than or equal to <code>DELAYTIMER_MAX</code>, then the
overrun count will be set to <code>DELAYTIMER_MAX</code>. The value returned by
<code>timer_getoverrun()</code> will apply to the most recent expiration signal delivery
or acceptance for the timer. If no expiration signal has been delivered
for the timer, or if the <i>Realtime Signals Extension</i> is not supported, the
return value of <code>timer_getoverrun()</code> is unspecified.
</p>
<p>
<b>NOTE:</b> This interface is not currently implemented in NuttX.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. Specifies pre-thread timer, previously created by the call to
<code>timer_create()</code>, whose overrun count will be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
If the <code>timer_getoverrun()</code> function succeeds, it will return the timer
expiration overrun count as explained above. <code>timer_getoverrun()</code> will fail if:
</p>
<ul>
<li><code>EINVAL</code>.
The <code>timerid</code> argument does not correspond to an ID returned by
<code>timer_create()</code> but not yet deleted by <code>timer_delete()</code>.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>This interface is not currently implemented by NuttX.</li>
</ul>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<HR>
<H2>2.8 <A NAME="Signals">Signal Interfaces</A></H2>
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
<p>
NuttX provides signal interfaces for tasks. Signals are used to
alter the flow control of tasks by communicating asynchronous events
within or between task contexts.
Any task or interrupt handler can post (or send) a signal to a particular task.
The task being signaled will execute task-specified signal handler
function the next time that the task has priority.
The signal handler is a user-supplied function that is bound to
a specific signal and performs whatever actions are necessary
whenever the signal is received.
</p>
<p>
There are no predefined actions for any signal.
The default action for all signals (i.e., when no signal handler has
been supplied by the user) is to ignore the signal.
In this sense, all NuttX are <i>real time</i> signals.
</p>
<p>
Tasks may also suspend themselves and wait until a signal is received.
</p>
<p>
The following signal handling interfaces are provided by NuttX:
</p>
<ul>
<li><a href="#sigemptyset">2.8.1 sigemptyset</a></li>
<li><a href="#sigfillset">2.8.2 sigfillset</a></li>
<li><a href="#sigaddset">2.8.3 sigaddset</a></li>
<li><a href="#sigdelset">2.8.4 sigdelset</a></li>
<li><a href="#sigismember">2.8.5 sigismember</a></li>
<li><a href="#sigaction">2.8.6 sigaction</a></li>
<li><a href="#sigprocmask">2.8.7 sigprocmask</a></li>
<li><a href="#sigpending">2.8.8 sigpending</a></li>
<li><a href="#sigsuspend">2.8.9 sigsuspend</a></li>
<li><a href="#sigwaitinfo">2.8.10 sigwaitinfo</a></li>
<li><a href="#sigtimedwait">2.8.11 sigtimedwait</a></li>
<li><a href="#sigqueue">2.8.12 sigqueue</a></li>
<li><a href="#kill">2.8.13 kill</a></li>
<H3><a name="sigemptyset">2.8.1 sigemptyset</a></H3>
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigemptyset(sigset_t *set);
</PRE>
<P>
<B>Description:</B> This function initializes the signal set specified
by set such that all signals are excluded.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. Signal set to initialize.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if the signal set cannot be initialized.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="sigfillset">2.8.2 sigfillset</a></H3>
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigfillset(sigset_t *set);
</PRE>
<P>
<B>Description:</B> This function initializes the signal set specified
by set such that all signals are included.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. Signal set to initialize
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if the signal set cannot be initialized.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="sigaddset">2.8.3 sigaddset</a></H3>
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigaddset(sigset_t *set, int signo);
</PRE>
<P>
<B>Description:</B> This function adds the signal specified by
signo to the signal set specified by set.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. Signal set to add signal to
<LI><I>signo</I>. Signal to add
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if the signal number is invalid.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="sigdelset">2.8.4 sigdelset</a></H3>
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigdelset(sigset_t *set, int signo);
</PRE>
<P>
<B>Description:</B> This function deletes the signal specified
by signo from the signal set specified by set.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. Signal set to delete the signal from
<LI><I>signo</I>. Signal to delete
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if the signal number is invalid.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="sigismember">2.8.5 sigismember</a></H3>
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigismember(const sigset_t *set, int signo);
</PRE>
<P>
<B>Description:</B> This function tests whether the signal specified
by signo is a member of the set specified by set.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. Signal set to test
<LI><I>signo</I>. Signal to test for
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>1 (TRUE), if the specified signal is a member of the set,
<LI>0 (OK or FALSE), if it is not, or
<LI>-1 (ERROR) if the signal number is invalid.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="sigaction">2.8.6 sigaction</a></H3>
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigaction( int signo, const struct sigaction *act,
struct sigaction *oact );
</PRE>
<P>
<B>Description:</B> This function allows the calling task to
examine and/or specify the action to be associated with a specific
signal.
<P>
The structure sigaction, used to describe an action to be taken, is defined
to include the following members:
<UL>
<LI><I>sa_u.sa_handler</I>. A pointer to a signal-catching function.
<LI><I>sa_u.sa_sigaction</I>. An alternative form for the signal catching
function.
<LI><I>sa_mask</I>. Additional set of signals to be blocked during
execution of the signal-catching function.
<LI><I>sa_flags</I>: Special flags to affect behavior of a signal.
</UL>
<P>
If the argument act is not NULL, it points to a structure specifying the
action to be associated with the specified signal. If the argument oact
is not NULL, the action previously associated with the signal is stored
in the location pointed to by the argument oact. If the argument act is
NULL, signal handling is unchanged by this function call; thus, the call
can be used to enquire about the current handling of a given signal.
<P>
When a signal is caught by a signal-catching function installed by the
sigaction() function, a new signal mask is calculated and installed for
the duration of the signal-catching function. This mask is formed by taking
the union of the current signal mask and the value of the sa_mask for the
signal being delivered, and then including the signal being delivered. If
and when the signal handler returns, the original signal mask is restored.
<P>
Signal catching functions execute in the same address environment as the
task that called sigaction() to install the signal-catching function.
<P>
Once an action is installed for a specific signal, it remains installed
until another action is explicitly requested by another call to
sigaction().
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>sig</I>. Signal of interest
<LI><I>act</I>. Location of new handler
<LI><I>oact</I>. Location to store old handler
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if the signal number is invalid.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the POSIX implementation include:
<UL>
<LI>Special values of sa_handler in the struct sigaction act input
not handled (SIG_DFL, SIG_IGN).
<LI>All sa_flags in struct sigaction of act input are ignored
(all treated like SA_SIGINFO).
</UL>
<H3><a name="sigprocmask">2.8.7 sigprocmask</a></H3>
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
</PRE>
<P>
<B>Description:</B> This function allows the calling task to
examine and/or change its signal mask. If the set is not NULL,
then it points to a set of signals to be used to change the currently
blocked set. The value of how indicates the manner in which the
set is changed.
<P>
If there are any pending unblocked signals after the call to sigprocmask(),
those signals will be delivered before sigprocmask() returns.
<P>
If sigprocmask() fails, the signal mask of the task is not changed.
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>how</I>. How the signal mast will be changed:
<UL>
<LI><I>osSIG_BLOCK</I>. The resulting set is the union of the
current set and the signal set pointed to by the <I>set</I> input parameter.
<LI><I>osSIG_UNBLOCK</I>. The resulting set is the intersection
of the current set and the complement of the signal set pointed
to by the <I>set</I> input parameter.
<LI><I>osSIG_SETMASK</I>. The resulting set is the signal set
pointed to by the <I>set</I> input parameter.
</UL>
<LI><I>set</I>. Location of the new signal mask
<LI><I>oset</I>. Location to store the old signal mask
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK), or -1 (ERROR) if how is invalid.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="sigpending">2.8.8 sigpending</a></H3>
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigpending( sigset_t *set );
</PRE>
<P>
<B>Description:</B> This function stores the returns the set of
signals that are blocked for delivery and that are pending for
the calling task in the space pointed to by set.
<P>
If the task receiving a signal has the signal blocked via its
sigprocmask, the signal will pend until it is unmasked. Only one pending
signal (for a given signo) is retained by the system. This is consistent
with POSIX which states: "If a subsequent occurrence of a pending
signal is generated, it is implementation defined as to whether the signal
is delivered more than once."
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. The location to return the pending signal set.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>0 (OK) or -1 (ERROR)
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="sigsuspend">2.8.9 sigsuspend</a></H3>
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigsuspend( const sigset_t *set );
</PRE>
<P>
<B>Description:</B> The sigsuspend() function replaces the signal mask
with the set of signals pointed to by the argument set and then suspends
the task until delivery of a signal to the task.
<P>
If the effect of the set argument is to unblock a pending signal, then
no wait is performed.
<P>
The original signal mask is restored when sigsuspend() returns.
<P>
Waiting for an empty signal set stops a task without freeing any
resources (a very bad idea).
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. The value of the signal <B>mask</B> to use while
suspended.
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>-1 (ERROR) always
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the POSIX specification include:
<UL>
<LI>POSIX does not indicate that the original signal mask is restored.
<LI>POSIX states that sigsuspend() "suspends the task until
delivery of a signal whose action is either to execute a signal-catching
function or to terminate the task." Only delivery of the signal
is required in the present implementation (even if the signal is ignored).
</UL>
<H3><a name="sigwaitinfo">2.8.10 sigwaitinfo</a></H3>
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigwaitinfo(const sigset_t *set, struct siginfo *info);
</PRE>
<P>
<B>Description:</B> This function is equivalent to sigtimedwait()
with a NULL timeout parameter. (see below).
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. The set of pending signals to wait for.
<LI><I>info</I>. The returned signal values
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>Signal number that cause the wait to be terminated, otherwise
-1 (ERROR) is returned.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="sigtimedwait">2.8.11 sigtimedwait</a></H3>
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigtimedwait( const sigset_t *set, struct siginfo *info,
const struct timespec *timeout );
</PRE>
<P>
<B>Description:</B> This function selects the pending signal set
specified by the argument set. If multiple signals are pending in set,
it will remove and return the lowest numbered one. If no signals in set
are pending at the time of the call, the calling task will be suspended
until one of the signals in set becomes pending OR until the task
interrupted by an unblocked signal OR until the time interval specified by
timeout (if any), has expired. If timeout is NULL, then the timeout interval
is forever.
<P>
If the info argument is non-NULL, the selected signal number is
stored in the si_signo member and the cause of the signal is store
in the si_code member. The content of si_value is only meaningful
if the signal was generated by sigqueue(). The following values
for si_code are defined in signal.h:
<UL>
<LI><I>SI_USER</I>. Signal sent from kill, raise, or abort
<LI><I>SI_QUEUE</I>. Signal sent from sigqueue
<LI><I>SI_TIMER</I>. Signal is result of timer expiration
<LI><I>SI_ASYNCIO</I>. Signal is the result of asynch IO completion
<LI><I>SI_MESGQ</I>. Signal generated by arrival of a message on an empty message queue.
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
</UL>
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>set</I>. The set of pending signals to wait for.
<LI><I>info</I>. The returned signal values
<LI><I>timeout</I>. The amount of time to wait
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>Signal number that cause the wait to be terminated, otherwise
-1 (ERROR) is returned.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the POSIX interface include:
<UL>
<LI>Values for si_codes differ
<LI>No mechanism to return cause of ERROR. (It can be inferred
from si_code in a non-standard way).
<LI>POSIX states that "If no signal is pending at the time of the
call, the calling task shall be suspended until one or more signals
in set become pending or until it is interrupted by an unblocked,
<I>caught</I> signal." The present implementation does not require
that the unblocked signal be caught; the task will be resumed even if
the unblocked signal is ignored.
</UL>
<H3><a name="sigqueue">2.8.12 sigqueue</a></H3>
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
<P>
<B>Function Prototype:</B>
<PRE>
#include <signal.h>
int sigqueue (int tid, int signo, const union sigval value);
</PRE>
<P>
<B>Description:</B> This function sends the signal specified by
signo with the signal parameter value to the task specified
by tid.
<P>
If the receiving task has the signal blocked via its sigprocmask,
the signal will pend until it is unmasked. Only one pending signal
(for a given signo) is retained by the system. This is consistent with
POSIX which states: "If a subsequent occurrence of a pending signal
is generated, it is implementation defined as to whether the signal
is delivered more than once."
<P>
<B>Input Parameters:</B>
<UL>
<LI><I>signo</I>. Signal number
<LI><I>value</I>. Value to pass to task with signal
</UL>
<P>
<B>Returned Values:</B>
<UL>
<LI>
On success (at least one signal was sent), zero (OK) is returned.
On error, -1 (ERROR) is returned, and errno is set appropriately.
<ul>
<li><code>EGAIN</code>. The limit of signals which may be queued has been reached.</li>
<li><code>EINVAL</code>. signo was invalid.</li>
<li><code>EPERM</code>. The task does not have permission to send the signal to the receiving process.</li>
<li><code>ESRCH</code>. No process has a PID matching pid.</li>
</ul>
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B> POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
Differences from the POSIX interface include:
<UL>
<LI>Default action is to ignore signals.
<LI>Signals are processed one at a time in order
<LI>POSIX states that, "If signo is zero (the null signal), error
checking will be performed but no signal is actually sent."
There is no null signal in the present implementation; a zero signal will
be sent.
</UL>
<H3><a name="kill">2.8.13 kill</a></H3>
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
<B>Function Prototype:</B>
<PRE>
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);
</PRE>
<P>
<B>Description:</B>
The kill() system call can be used to send any signal to
any task.
</p>
<p>
If the receiving task has the signal blocked via its sigprocmask,
the signal will pend until it is unmasked. Only one pending signal
(for a given signo) is retained by the system. This is consistent with
POSIX which states: "If a subsequent occurrence of a pending signal
is generated, it is implementation defined as to whether the signal
is delivered more than once."
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>pid</I>. The id of the task to receive the signal.
The POSIX <code>kill()</code> specification encodes process group
information as zero and negative pid values.
Only positive, non-zero values of pid are supported by this
implementation. ID of the task to receive signal
<LI><I>signo</I>. The signal number to send.
If signo is zero, no signal is sent, but all error checking is performed.
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
</UL>
<p>
<B>Returned Values:</B>
<UL>
<LI>OK or ERROR
</UL>
</p>
<p>
<B>Assumptions/Limitations:</B>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
Differences from the POSIX interface include:
</p>
<ul>
<li>Default action is to ignore signals.</li>
<li>Signals are processed one at a time in order </li>
<li>Sending of signals to 'process groups' is not supported in NuttX.</li>
</ul>
<H2>2.9 <A NAME="Pthread">Pthread Interfaces</A></H2>
<p>
NuttX does not support <i>processes</i> in the way that, say, Linux does.
NuttX only supports simple threads or tasks running within the same address space.
For the most part, threads and tasks are interchangeable and differ primarily
only in such things as the inheritance of file descriptors.
Basically, threads are initialized and uninitialized differently and share a
few more resources than tasks.
<p>
The following pthread interfaces are supported in some form by NuttX:
</p>
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
<li><a href="#pthreadattrinit">2.9.1 pthread_attr_init</a></li>
<li><a href="#pthreadattrdestroy">2.9.2 pthread_attr_destroy</a></li>
<li><a href="#pthreadattrsetschedpolity">2.9.3 pthread_attr_setschedpolicy</a></li>
<li><a href="#pthreadattrgetschedpolicy">2.9.4 pthread_attr_getschedpolicy</a></li>
<li><a href="#pthreadattrsetschedparam">2.9.5 pthread_attr_setschedparam</a></li>
<li><a href="#pthreadattrgetschedparam">2.9.6 pthread_attr_getschedparam</a></li>
<li><a href="#pthreadattrsetinheritsched">2.9.7 pthread_attr_setinheritsched</a></li>
<li><a href="#pthreadattrgetinheritsched">2.9.8 pthread_attr_getinheritsched</a></li>
<li><a href="#pthreadattrsetstacksize">2.9.9 pthread_attr_setstacksize</a></li>
<li><a href="#pthreadattrgetstacksize">2.9.10 pthread_attr_getstacksize</a></li>
<li><a href="#pthreadcreate">2.9.11 pthread_create</a></li>
<li><a href="#pthreaddetach">2.9.12 pthread_detach</a></li>
<li><a href="#pthreadexit">2.9.13 pthread_exit</a></li>
<li><a href="#pthreadcancel">2.9.14 pthread_cancel</a></li>
<li><a href="#pthreadsetcancelstate">2.9.15 pthread_setcancelstate</a></li>
<li><a href="#pthreadtestcancelstate">2.9.16 pthread_testcancelstate</a></li>
<li><a href="#pthreadjoin">2.9.17 pthread_join</a></li>
<li><a href="#pthreadyield">2.9.18 pthread_yield</a></li>
<li><a href="#pthreadself">2.9.19 pthread_self</a></li>
<li><a href="#pthreadgetschedparam">2.9.20 pthread_getschedparam</a></li>
<li><a href="#pthreadsetschedparam">2.9.21 pthread_setschedparam</a></li>
<li><a href="#pthreadkeycreate">2.9.22 pthread_key_create</a></li>
<li><a href="#pthreadsetspecific">2.9.23 pthread_setspecific</a></li>
<li><a href="#pthreadgetspecific">2.9.24 pthread_getspecific</a></li>
<li><a href="#pthreadkeydelete">2.9.25 pthread_key_delete</a></li>
<li><a href="#pthreadmutexattrinit">2.9.26 pthread_mutexattr_init</a></li>
<li><a href="#pthreadmutexattrdestroy">2.9.27 pthread_mutexattr_destroy</a></li>
<li><a href="#pthreadmutexattrgetpshared">2.9.28 pthread_mutexattr_getpshared</a></li>
<li><a href="#pthreadmutexattrsetpshared">2.9.29 pthread_mutexattr_setpshared</a></li>
<li><a href="#pthreadmutexinit">2.9.30 pthread_mutex_init</a></li>
<li><a href="#pthreadmutexdestrory">2.9.31 pthread_mutex_destroy</a></li>
<li><a href="#pthreadmutexlock">2.9.32 pthread_mutex_lock</a></li>
<li><a href="#pthreadmutextrylock">2.9.33 pthread_mutex_trylock</a></li>
<li><a href="#pthreadmutexunlock">2.9.34 pthread_mutex_unlock</a></li>
<li><a href="#pthreadconaddrinit">2.9.35 pthread_condattr_init</a></li>
<li><a href="#pthreadocndattrdestroy">2.9.36 pthread_condattr_destroy</a></li>
<li><a href="#pthreadcondinit">2.9.37 pthread_cond_init</a></li>
<li><a href="#pthreadconddestroy">2.9.38 pthread_cond_destroy</a></li>
<li><a href="#pthreadcondbroadcast">2.9.39 pthread_cond_broadcast</a></li>
<li><a href="#pthreadcondsignal">2.9.40 pthread_cond_signal</a></li>
<li><a href="#pthreadcondwait">2.9.41 pthread_cond_wait</a></li>
<li><a href="#pthreadcondtimedwait">2.9.42 pthread_cond_timedwait</a></li>
<li><a href="#pthreadbarrierattrinit">2.9.43 pthread_barrierattr_init</a></li>
<li><a href="#pthreadbarrierattrdestroy">2.9.44 pthread_barrierattr_destroy</a></li>
<li><a href="#pthreadbarrierattrsetpshared">2.9.45 pthread_barrierattr_setpshared</a></li>
<li><a href="#pthreadbarrierattrgetpshared">2.9.46 pthread_barrierattr_getpshared</a></li>
<li><a href="#pthreadbarrierinit">2.9.47 pthread_barrier_init</a></li>
<li><a href="#pthreadbarrierdestroy">2.9.48 pthread_barrier_destroy</a></li>
<li><a href="#pthreadbarrierwait">2.9.49 pthread_barrier_wait</a></li>
<li><a href="#pthreadonce">2.9.50 pthread_once</a></li>
<li><a href="#pthreadkill">2.9.51 pthread_kill</a></li>
<li><a href="#pthreadsigmask">2.9.52 pthread_sigmask</a></li>
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
<p>
No support for the ollowing pthread interfaces is provided by NuttX:
</p>
<ul>
<li><code>pthread_atfork</code>. register fork handlers.</li>
<li><code>pthread_attr_getdetachstate</code>. get and set the detachstate attribute.</li>
<li><code>pthread_attr_getguardsize</code>. get and set the thread guardsize attribute.</li>
<li><code>pthread_attr_getinheritsched</code>. get and set the inheritsched attribute.</li>
<li><code>pthread_attr_getscope</code>. get and set the contentionscope attribute.</li>
<li><code>pthread_attr_getstack</code>. get and set stack attributes.</li>
<li><code>pthread_attr_getstackaddr</code>. get and set the stackaddr attribute.</li>
<li><code>pthread_attr_setdetachstate</code>. get and set the detachstate attribute.</li>
<li><code>pthread_attr_setguardsize</code>. get and set the thread guardsize attribute.</li>
<li><code>pthread_attr_setscope</code>. get and set the contentionscope attribute.</li>
<li><code>pthread_attr_setstack</code>. get and set stack attributes.</li>
<li><code>pthread_attr_setstackaddr</code>. get and set the stackaddr attribute.</li>
<li><code>pthread_barrier_destroy</code>. destroy and initialize a barrier object.</li>
<li><code>pthread_barrier_init</code>. destroy and initialize a barrier object.</li>
<li><code>pthread_barrier_wait</code>. synchronize at a barrier.</li>
<li><code>pthread_cleanup_pop</code>. establish cancellation handlers.</li>
<li><code>pthread_cleanup_push</code>. establish cancellation handlers.</li>
<li><code>pthread_condattr_getclock</code>. get and set the clock selection condition variable attribute.</li>
<li><code>pthread_condattr_getpshared</code>. get and set the process-shared condition variable attributes.</li>
<li><code>pthread_condattr_setclock</code>. get and set the clock selection condition variable attribute.</li>
<li><code>pthread_condattr_setpshared</code>. get and set the process-shared condition variable attributes.</li>
<li><code>pthread_getconcurrency</code>. get and set the level of concurrency.</li>
<li><code>pthread_getcpuclockid</code>. access a thread CPU-time clock.</li>
<li><code>pthread_mutex_getprioceiling</code>. get and set the priority ceiling of a mutex.</li>
<li><code>pthread_mutex_setprioceiling</code>. get and set the priority ceiling of a mutex.</li>
<li><code>pthread_mutex_timedlock</code>. lock a mutex.</li>
<li><code>pthread_mutexattr_getprioceiling</code>. get and set the prioceiling attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_getprotocol</code>. get and set the protocol attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_gettype</code>. get and set the mutex type attribute.</li>
<li><code>pthread_mutexattr_setprioceiling</code>. get and set the prioceiling attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_setprotocol</code>. get and set the protocol attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_settype</code>. get and set the mutex type attribute.</li>
<li><code>pthread_rwlock_destroy</code>. destroy and initialize a read-write lock object.</li>
<li><code>pthread_rwlock_init</code>. destroy and initialize a read-write lock object.</li>
<li><code>pthread_rwlock_rdlock</code>. lock a read-write lock object for reading.</li>
<li><code>pthread_rwlock_timedrdlock</code>. lock a read-write lock for reading.</li>
<li><code>pthread_rwlock_timedwrlock</code>. lock a read-write lock for writing.</li>
<li><code>pthread_rwlock_tryrdlock</code>. lock a read-write lock object for reading.</li>
<li><code>pthread_rwlock_trywrlock</code>. lock a read-write lock object for writing.</li>
<li><code>pthread_rwlock_unlock</code>. unlock a read-write lock object.</li>
<li><code>pthread_rwlock_wrlock</code>. lock a read-write lock object for writing.</li>
<li><code>pthread_rwlockattr_destroy</code>. destroy and initialize the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_getpshared</code>. get and set the process-shared attribute of the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_init</code>. destroy and initialize the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_setpshared</code>. get and set the process-shared attribute of the read-write lock attributes object.</li>
<li><code>pthread_setcanceltype</code>. set cancelability state.</li>
<li><code>pthread_setconcurrency</code>. get and set the level of concurrency.</li>
<li><code>pthread_spin_destroy</code>. destroy or initialize a spin lock object.</li>
<li><code>pthread_spin_init</code>. destroy or initialize a spin lock object.</li>
<li><code>pthread_spin_lock</code>. lock a spin lock object.</li>
<li><code>pthread_spin_trylock</code>. lock a spin lock object.</li>
<li><code>pthread_spin_unlock</code>. unlock a spin lock object.</li>
<li><code>pthread_testcancel</code>. set cancelability state.</li>
</ul>
<H3><a name="pthreadattrinit">2.9.1 pthread_attr_init</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_init(pthread_attr_t *attr);
</PRE>
<P>
<B>Description:</B>
Initializes a thread attributes object (attr) with default values
for all of the individual attributes used by the implementation.
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<P>
<H3><a name="pthreadattrdestroy">2.9.2 pthread_attr_destroy</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_destroy(pthread_attr_t *attr);
</PRE>
<P>
<B>Description:</B>
An attributes object can be deleted when it is no longer needed.
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<P>
<H3><a name="pthreadattrsetschedpolity">2.9.3 pthread_attr_setschedpolicy</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_setschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadattrgetschedpolicy">2.9.4 pthread_attr_getschedpolicy</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_getschedpolicy(pthread_attr_t *attr, int *policy);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_getschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadattrsetschedparam">2.9.5 pthread_attr_getschedpolicy</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_setschedparam(pthread_attr_t *attr,
const struct sched_param *param);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_getschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadattrgetschedparam">2.9.6 pthread_attr_getschedparam</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_getschedparam(pthread_attr_t *attr,
struct sched_param *param);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_getschedparam()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadattrsetinheritsched">2.9.7 pthread_attr_setinheritsched</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_setinheritsched()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<P>
<H3><a name="pthreadattrgetinheritsched">2.9.8 pthread_attr_getinheritsched</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_getinheritsched(const pthread_attr_t *attr,
int *inheritsched);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_getinheritsched()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadattrsetstacksize">2.9.9 pthread_attr_setstacksize</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_setstacksize(pthread_attr_t *attr, long stacksize);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_setstacksize()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadattrgetstacksize">2.9.10 pthread_attr_getstacksize</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_attr_getstacksize(pthread_attr_t *attr, long *stackaddr);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_attr_getstacksize()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadcreate">2.9.11 pthread_create</A></H3>
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_create(pthread_t *thread, pthread_attr_t *attr,
pthread_startroutine_t startRoutine,
pthread_addr_t arg);
</PRE>
<P>
<B>Description:</B>
To create a thread object and runnable thread, a routine
must be specified as the new thread's start routine. An
argument may be passed to this routine, as an untyped
address; an untyped address may also be returned as the
routine's value. An attributes object may be used to
specify details about the kind of thread being created.
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_create()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreaddetach">2.9.12 pthread_detach</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_detach(pthread_t thread);
</PRE>
<P>
<B>Description:</B>
A thread object may be "detached" to specify that the
return value and completion status will not be requested.
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_detach()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadexit">2.9.13 pthread_exit</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
void pthread_exit(pthread_addr_t pvValue);
</PRE>
<P>
<B>Description:</B>
A thread may terminate it's own execution.
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_exit()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadcancel">2.9.14 pthread_cancel</A></H3>
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_cancel(pthread_t thread);
</PRE>
<P>
<B>Description:</B>
<p>The pthread_cancel() function shall request that thread
be canceled. The target thread's cancelability state determines
when the cancellation takes effect. When the
cancellation is acted on, thread shall be terminated.</p>
<p>When cancelability is disabled, all cancels are held pending
in the target thread until the thread changes the cancelability.
When cancelability is deferred, all cancels are held pending in
the target thread until the thread changes the cancelability or
calls pthread_testcancel().</p>
<p>Cancelability is asynchronous; all cancels are acted upon
immediately (when enable), interrupting the thread with its processing.</p>
<P>
<B>Input Parameters:</B>
<P>
<UL>
<LI><I>thread</I>.
Identifies the thread to be canceled.</li>
</UL>
<P>
<B>Returned Values:</B>
<P>
If successful, the <I>ptnread_cancel()</I> function will return zero (<I>OK</I>).
Otherwise, an error number will be returned to indicate the error:
<P>
<UL>
<LI><I>ESRCH</I>.
No thread could be found corresponding to that specified by the given thread ID.</li>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name. Except:</p>
<UL>
<LI>The thread-specific data destructor functions shall be called for thread.
However, these destructors are not currently supported.</li>
<li>Cancellation types are not supported. The thread will be canceled
at the time that pthread_cancel() is called or, if cancelation is disabled, at
the time when cancelation is re-enabled.</li>
<li><tt>pthread_testcancel()</tt> is not supported.</li>
<li>Thread cancellation at <i>cancellation points</i> is not supported.</li>
</UL>
<H3><a name="pthreadsetcancelstate">2.9.15 pthread_setcancelstate</A></H3>
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_setcancelstate(int state, int *oldstate);
</PRE>
<P>
<B>Description:</B>
<P>The <i>pthread_setcancelstate()</i> function atomically
sets both the calling thread's cancelability state to the indicated
state and returns the previous cancelability state at the location
referenced by oldstate.
Legal values for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.<.li>
<p>Any pending thread cancelation may occur at the time that the
cancelation state is set to PTHREAD_CANCEL_ENABLE.</p>
<B>Input Parameters:</B>
<P>
<UL>
<LI><I>state</I>
New cancelation state. One of PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.<.li>
<LI><I>oldstate</I>.
Location to return the previous cancelation state.
</UL>
<P>
<B>Returned Values:</B>
<P>
If successful, the <I>pthread_setcancelstate()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be returned to indicate the error:
<P>
<UL>
<LI><I>ESRCH</I>.
No thread could be found corresponding to that specified by the given thread ID.</li>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadtestcancelstate">2.9.16 pthread_testcancelstate</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
If successful, the <I>pthread_setcancelstate()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadjoin">2.9.17 pthread_join</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_join(pthread_t thread, pthread_addr_t *ppvValue);
</PRE>
<P>
<B>Description:</B>
A thread can await termination of another thread and retrieve
the return value of the thread.
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_join()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadyield">2.9.18 pthread_yield</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
void pthread_yield(void);
</PRE>
<P>
<B>Description:</B>
A thread may tell the scheduler that its processor can be
made available.
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_yield()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadself">2.9.19 pthread_self</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
pthread_t pthread_self(void);
</PRE>
<P>
<B>Description:</B>
A thread may obtain a copy of its own thread handle.
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_self()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadgetschedparam">2.9.20 pthread_getschedparam</A></H3>
#include <pthread.h>
int pthread_getschedparam(pthread_t thread, int *policy,
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
struct sched_param *param);
</pre>
<p>
<b>Description:</b>
The <code>pthread_getschedparam()</code> functions will get the
scheduling policy and parameters of threads.
For <code>SCHED_FIFO</code> and <code>SCHED_RR</code>, the only
required member of the <code>sched_param</code> structure is the
priority <code>sched_priority</code>.
</p>
<p>
The <code>pthread_getschedparam()</code> function will retrieve the
scheduling policy and scheduling parameters for the thread whose thread
ID is given by <code>thread</code> and will store those values in
<code>policy</code> and <code>param</code>, respectively.
The priority value returned from <code>pthread_getschedparam()</code>
will be the value specified by the most recent <code>pthread_setschedparam()</code>,
<code>pthread_setschedprio()</code>, or <code>pthread_create()</code> call
affecting the target thread.
It will not reflect any temporary adjustments to its priority (such as might
result of any priority inheritance, for example).
</p>
<p>
The policy parameter may have the value <code>SCHED_FIFO</code> or <code>SCHED_RR</code>
(<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code>, in particular, are not supported).
The <code>SCHED_FIFO</code> and <code>SCHED_RR<code> policies will have a single
scheduling parameter, <code>sched_priority</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>thread</code>.
The ID of thread whose scheduling parameters will be queried.
</li>
<li>
<code>policy</code>.
The location to store the thread's scheduling policy.
</li>
<li>
<code>param</code>.
The location to store the thread's priority.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (<code>OK</code>) if successful.
Otherwise, the error code <code>ESRCH</code> if the value specified by
<code>thread</code> does not refer to an existing thread.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<H3><a name="pthreadsetschedparam">2.9.21 pthread_setschedparam</A></H3>
#include <pthread.h>
int pthread_setschedparam(pthread_t thread, int policy,
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
const struct sched_param *param);
</pre>
<p>
<b>Description:</b>
The <code>pthread_setschedparam()</code> functions will set the scheduling policy
and parameters of threads.
For <code>SCHED_FIFO</code> and <code>SCHED_RR</code>, the only required member
of the <code>sched_param</code> structure is the priority <code>sched_priority</code>.
</p>
</p>
The <code>pthread_setschedparam()</code> function will set the scheduling policy
and associated scheduling parameters for the thread whose thread ID is given by
<code>thread</code> to the policy and associated parameters provided in
<code>policy</code> and <code>param</code>, respectively.
</p>
<p>
The policy parameter may have the value <code>SCHED_FIFO</code> or <code>SCHED_RR</code>.
(<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code>, in particular, are not supported).
The <code>SCHED_FIFO</code> and <code>SCHED_RR</code> policies will have a single
scheduling parameter, <code>sched_priority</code>.
</p>
<p>
If the <code>pthread_setschedparam()</code> function fails, the scheduling
parameters will not be changed for the target thread.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>thread</code>.
The ID of thread whose scheduling parameters will be modified.
</li>
<li>
<code>policy</code>.
The new scheduling policy of the thread.
Either <code>SCHED_FIFO</code> or <code>SCHED_RR<code>.
<code>SCHED_OTHER<code> and <code>SCHED_SPORADIC<code> are not supported.
</li>
<li>
<code>param</code>.
The location to store the thread's priority.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>pthread_setschedparam()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
</p>
<ul>
<li>
<code>EINVAL</code>.
The value specified by <code>policy</code> or one of the scheduling parameters
associated with the scheduling policy <code>policy</code> is invalid.
</li>
<li>
<code>ENOTSUP</code>.
An attempt was made to set the policy or scheduling parameters to an unsupported
value (<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code> in particular are
not supported)
</li>
<li>
<code>EPERM</code>.
The caller does not have the appropriate permission to set either the scheduling
parameters or the scheduling policy of the specified thread.
Or, the implementation does not allow the application to modify one of the
parameters to the value specified.
</li>
<li>
<code>ESRCH</code>.
The value specified by thread does not refer to a existing thread.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<H3><a name="pthreadkeycreate">2.9.22 pthread_key_create</A></H3>
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_key_create( pthread_key_t *key, void (*destructor)(void*) )
</PRE>
<P>
<B>Description:</B>
<P>
This function creates a thread-specific data key visible
to all threads in the system. Although the same key value
may be used by different threads, the values bound to
the key by <I>pthread_setspecific()</I> are maintained on a
per-thread basis and persist for the life of the calling
thread.
<P>
Upon key creation, the value <I>NULL</I> will be associated with
the the new key in all active threads. Upon thread
creation, the value <I>NULL</I> will be associated with all
defined keys in the new thread.
<P>
<B>Input Parameters:</B>
<P>
<UL>
<LI><I>key</I> is a pointer to the key to create.
<LI><I>destructor</I> is an optional destructor() function that may
be associated with each key that is invoked when a
thread exits. However, this argument is ignored in
the current implementation.
</UL>
<P>
<B>Returned Values:</B>
<P>
If successful, the <I>pthread_key_create()</I> function will
store the newly created key value at *<I>key</I> and return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
<LI><I>EAGAIN</I>. The system lacked sufficient resources
to create another thread-specific data key, or the
system-imposed limit on the total number of keys
per task {<I>PTHREAD_KEYS_MAX</I>} has been exceeded
<LI><I>ENONMEM</I> Insufficient memory exists to create the key.
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<UL>
<LI>The present implementation ignores the destructor argument.
</UL>
<H3><a name="pthreadsetspecific">2.9.23 pthread_setspecific</A></H3>
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_setspecific( pthread_key_t key, void *value )
</PRE>
<P>
<B>Description:</B>
<P>
The <I>pthread_setspecific()</I> function associates a thread-
specific value with a key obtained via a previous call
to <I>pthread_key_create()</I>. Different threads may bind
different values to the same key. These values are
typically pointers to blocks of dynamically allocated
memory that have been reserved for use by the calling
thread.
<P>
The effect of calling <I>pthread_setspecific()</I> with a key value
not obtained from <I>pthread_key_create()</I> or after a key has been
deleted with <I>pthread_key_delete()</I> is undefined.
<P>
<B>Input Parameters:</B>
<P>
<UL>
<LI><I>key</I>. The data key to set the binding for.
<LI><I>value</I>. The value to bind to the key.
</UL>
<P>
<B>Returned Values:</B>
<P>
If successful, <I>pthread_setspecific()</I> will return zero (<I>OK</I>).
Otherwise, an error number will be returned:
<P>
<UL>
<LI><I>ENOMEM</I>. Insufficient memory exists to associate the value
with the key.
<LI><I>EINVAL</I>. The key value is invalid.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<UL>
<LI>pthread_setspecific() may be called from a thread-specific data
destructor function.
</UL>
<H3><a name="pthreadgetspecific">2.9.24 pthread_getspecific</A></H3>
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
void *pthread_getspecific( pthread_key_t key )
</PRE>
<P>
<B>Description:</B>
<P>
The <I>pthread_getspecific()</I> function returns the value
currently bound to the specified key on behalf of the
calling thread.
<P>
The effect of calling <I>pthread_getspecific()</I> with a key value
not obtained from <I>pthread_key_create()</I> or after a key has been
deleted with <I>pthread_key_delete()</I> is undefined.
<P>
<B>Input Parameters:</B>
<P>
<UL>
<LI><I>key</I>. The data key to get the binding for.
</UL>
<P>
<B>Returned Values:</B>
<P>
The function <I>pthread_getspecific()</I> returns the thread-
specific data associated with the given key. If no
thread specific data is associated with the key, then
the value <I>NULL</I> is returned.
<P>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<UL>
<LI>pthread_getspecific() may be called from a thread-specific data
destructor function.
</UL>
<H3><a name="pthreadkeydelete">2.9.25 pthread_key_delete</A></H3>
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_key_delete( pthread_key_t key )
</PRE>
<P>
<B>Description:</B>
<P>
This POSIX function should delete a thread-specific data
key previously returned by <I>pthread_key_create()</I>. However,
this function does nothing in the present implementation.
<P>
<B>Input Parameters:</B>
<P>
<UL>
<LI><I>key</I>. The key to delete
</UL>
<P>
<B>Returned Values:</B>
<P>
<UL>
<LI>Always returns <I>EINVAL</I>.
</UL>
<P>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutexattrinit">2.9.26 pthread_mutexattr_init</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutexattr_init(pthread_mutexattr_t *attr);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutexattr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutexattrdestroy">2.9.27 pthread_mutexattr_destroy</A></H3>
<P>
<B>Function Protoype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutexattr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutexattrgetpshared">2.9.28 pthread_mutexattr_getpshared</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr,
int *pshared);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutexattr_getpshared()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutexattrsetpshared">2.9.29 pthread_mutexattr_setpshared</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutexattr_setpshared()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutexinit">2.9.30 pthread_mutex_init</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex,
pthread_mutexattr_t *attr);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutex_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutexdestrory">2.9.31 pthread_mutex_destroy</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutex_destroy(pthread_mutex_t *mutex);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutex_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutexlock">2.9.32 pthread_mutex_lock</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutex_lock()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutextrylock">2.9.33 pthread_mutex_trylock</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutex_trylock(pthread_mutex_t *mutex);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutex_trylock()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadmutexunlock">2.9.34 pthread_mutex_unlock</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_mutex_unlock(pthread_mutex_t *mutex);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_mutex_unlock()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadconaddrinit">2.9.35 pthread_condattr_init</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_condattr_init(pthread_condattr_t *attr);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_condattr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadocndattrdestroy">2.9.36 pthread_condattr_destroy</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_condattr_destroy(pthread_condattr_t *attr);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_condattr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadcondinit">2.9.37 pthread_cond_init</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_cond_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadconddestroy">2.9.38 pthread_cond_destroy</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_cond_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadcondbroadcast">2.9.39 pthread_cond_broadcast</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_cond_broadcast(pthread_cond_t *cond);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_cond_broadcast()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadcondsignal">2.9.40 pthread_cond_signal</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_cond_signal(pthread_cond_t *dond);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_cond_signal()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadcondwait">2.9.41 pthread_cond_wait</A></H3>
<P>
<B>Function Prototype:</B>
<P>
<PRE>
#include <pthread.h>
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
</PRE>
<P>
<B>Description:</B>
<P>
<B>Input Parameters:</B>
<P>
<UL>
If successful, the <I>pthread_cond_wait()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<P>
<UL>
</UL>
<B>Assumptions/Limitations:</B>
<P>
<B>POSIX Compatibility:</B> Comparable to the POSIX
interface of the same name.
<H3><a name="pthreadcondtimedwait">2.9.42 pthread_cond_timedwait</A></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>parm</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <code>pthread_cond_timedwait()</code> function will return
zero (<code>OK</code>). Otherwise, an error number will be
returned to indicate the error:
</p>
<ul>
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrinit">2.9.43 pthread_barrierattr_init</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_init(FAR pthread_barrierattr_t *attr);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_init()</code> function will initialize a barrier
attribute object <code>attr</code> with the default value for all of the attributes
defined by the implementation.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>attr</code>. Barrier attributes to be initialized.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (<code>OK</code>) on success or <code>EINVAL</code> if <code>attr</code> is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrdestroy">2.9.44 pthread_barrierattr_destroy</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_destroy(FAR pthread_barrierattr_t *attr);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_destroy()</code> function will destroy a barrier attributes object.
A destroyed attributes object can be reinitialized using <code>pthread_barrierattr_init()</code>;
the results of otherwise referencing the object after it has been destroyed are undefined.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>attr</code>. Barrier attributes to be destroyed.
</li>
</ul>
<p>
<b>Returned Values:</b> 0 (OK) on success or EINVAL if attr is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrsetpshared">2.9.45 pthread_barrierattr_setpshared</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_setpshared(FAR pthread_barrierattr_t *attr, int pshared);
</pre>
<p>
<b>Description:</b>
The process-shared attribute is set to <code>PTHREAD_PROCESS_SHARED</code> to permit
a barrier to be operated upon by any thread that has access to the memory where the
barrier is allocated.
If the process-shared attribute is <code>PTHREAD_PROCESS_PRIVATE</code>, the barrier can
only be operated upon by threads created within the same process as the thread that
initialized the barrier.
If threads of different processes attempt to operate on such a barrier, the behavior is undefined.
The default value of the attribute is <code>PTHREAD_PROCESS_PRIVATE</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>attr</code>. Barrier attributes to be modified.</li>
<li><code>pshared</code>. The new value of the pshared attribute.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if either
<code>attr</code> is invalid or <code>pshared</code> is not one of
<code>PTHREAD_PROCESS_SHARED</code> or <code>PTHREAD_PROCESS_PRIVATE</code>.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrgetpshared">2.9.46 pthread_barrierattr_getpshared</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_getpshared(FAR const pthread_barrierattr_t *attr, FAR int *pshared);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_getpshared()</code> function will obtain the value of the
process-shared attribute from the attributes object referenced by <code>attr</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>attr</code>. Barrier attributes to be queried.</li>
<li><code>pshared</code>. The location to stored the current value of the pshared attribute.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if
either <code>attr</code> or <code>pshared</code> is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierinit">2.9.47 pthread_barrier_init</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_init(FAR pthread_barrier_t *barrier,
FAR const pthread_barrierattr_t *attr, unsigned int count);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_init()</code> function allocates any resources required to
use the barrier referenced by <code>barrier</code> and initialized the barrier with
the attributes referenced by <code>attr</code>.
If <code>attr</code> is NULL, the default barrier attributes will be used.
The results are undefined if <code>pthread_barrier_init()</code> is called when any
thread is blocked on the barrier.
The results are undefined if a barrier is used without first being initialized.
The results are undefined if <code>pthread_barrier_init()</code> is called specifying
an already initialized barrier.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>barrier</code>.
The barrier to be initialized.
</li>
<li>
<code>attr</code>.
Barrier attributes to be used in the initialization.
</li>
<li>
<code>count</code>.
The count to be associated with the barrier.
The count argument specifies the number of threads that must call
<code>pthread_barrier_wait()</code> before any of them successfully return from the call.
The value specified by count must be greater than zero.
</li>
</ul>
<p>
<b>Returned Values:</b>0 (OK) on success or on of the following error numbers:
</p>
<ul>
<li>
<code>EAGAIN</code>.
The system lacks the necessary resources to initialize another barrier.
</li>
<li>
<code>EINVAL</code>.
The barrier reference is invalid, or the values specified by attr are invalid, or
the value specified by count is equal to zero.
</li>
<li>
<code>ENOMEM</code>.
Insufficient memory exists to initialize the barrier.
</li>
<li>
<code>EBUSY</code>.
The implementation has detected an attempt to reinitialize a barrier while it is in use.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierdestroy">2.9.48 pthread_barrier_destroy</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_destroy(FAR pthread_barrier_t *barrier);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_destroy()</code> function destroys the barrier referenced
by <code>barrie</code> and releases any resources used by the barrier.
The effect of subsequent use of the barrier is undefined until the barrier is
reinitialized by another call to <code>pthread_barrier_init()</code>.
The results are undefined if <code>pthread_barrier_destroy()</code> is called when
any thread is blocked on the barrier, or if this function is called with an
uninitialized barrier.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>barrier</code>. The barrier to be destroyed.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or on of the following error numbers:
</p>
<ul>
<li>
<code>EBUSY</code>.
The implementation has detected an attempt to destroy a barrier while it is in use.
</li>
<li>
<code>EINVAL</code>.
The value specified by barrier is invalid.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierwait">2.9.49 pthread_barrier_wait</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_wait(FAR pthread_barrier_t *barrier);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_wait()</code> function synchronizse participating
threads at the barrier referenced by <code>barrier</code>.
The calling thread is blocked until the required number of threads have called
<code>pthread_barrier_wait()</code> specifying the same <code>barrier</code>.
When the required number of threads have called <code>pthread_barrier_wait()</code>
specifying the <code>barrier</code>, the constant <code>PTHREAD_BARRIER_SERIAL_THREAD</code>
will be returned to one unspecified thread and zero will be returned to each of
the remaining threads.
At this point, the barrier will be reset to the state it had as a result of the most
recent <code>pthread_barrier_init()</code> function that referenced it.
</p>
<p>
The constant <code>PTHREAD_BARRIER_SERIAL_THREAD</code> is defined in
<code>pthread.h</code> and its value must be distinct from any other value
returned by <code>pthread_barrier_wait()</code>.
</p>
<p>
The results are undefined if this function is called with an uninitialized barrier.
</p>
<p>
If a signal is delivered to a thread blocked on a barrier, upon return from the
signal handler the thread will resume waiting at the barrier if the barrier wait
has not completed.
Otherwise, the thread will continue as normal from the completed barrier wait.
Until the thread in the signal handler returns from it, it is unspecified whether
other threads may proceed past the barrier once they have all reached it.
</p>
<p>
A thread that has blocked on a barrier will not prevent any unblocked thread that
is eligible to use the same processing resources from eventually making forward
progress in its execution.
Eligibility for processing resources will be determined by the scheduling policy.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>barrier</code>. The barrier on which to wait.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if the barrier is not valid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadonce">2.9.50 pthread_once</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_once(FAR pthread_once_t *once_control, CODE void (*init_routine)(void));
</pre>
<p>
<b>Description:</b>
The first call to <code>pthread_once()</code> by any thread with a given
<code>once_control</code>, will call the <code>init_routine()</code> with no arguments.
Subsequent calls to <code>pthread_once()</code> with the same <code>once_control</code> will have no effect.
On return from <code>pthread_once()</code>, <code>init_routine()</code> will have completed.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>once_control</code>.
Determines if <code>init_routine()</code> should be called.
<code>once_control</code> should be declared and intialized as follows:
<ul><pre>pthread_once_t once_control = PTHREAD_ONCE_INIT;
</pre></ul>
<code>PTHREAD_ONCE_INIT</code> is defined in <code>pthread.h</code>.
</li>
<li>
<code>init_routine</code>.
The initialization routine that will be called once.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (OK) on success or EINVAL if either once_control or init_routine are invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadkill">2.9.51 pthread_kill</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <signal.h>
#include <pthread.h>
int pthread_kill(pthread_t thread, int signo)
</pre>
<p>
<b>Description:</b>
The <code>pthread_kill()</code> system call can be used to send any
signal to a thread. See <code>kill()</code> for further information
as this is just a simple wrapper around the <code>kill()</code>
function.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>thread</code>.
The id of the thread to receive the signal. Only positive, non-zero values of <code>tthread</code>t are supported.
</li>
<li>
<code>signo</code>.
The signal number to send. If <code>signo</code> is zero, no signal is sent, but all error checking is performed.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
On success, the signal was sent and zero is returned.
On error one of the following error numbers is returned.
</p>
<ul>
<li>
<code>EINVAL</code>.
An invalid signal was specified.
</li>
<li>
<code>EPERM</code>.
The thread does not have permission to send the signal to the target thread.
</li>
<li>
<code>ESRCH</code>.
No thread could be found corresponding to that specified by the given thread ID.
</li>
<li>
<code>ENOSYS</code>.
Do not support sending signals to process groups.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadsigmask">2.9.52 pthread_sigmask</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <signal.h>
#include <pthread.h>
int pthread_sigmask(int how, FAR const sigset_t *set, FAR sigset_t *oset);
</pre>
<p>
<b>Description:</b>
This function is a simple wrapper around <code>sigprocmask()</code>.
See the <code>sigprocmask()</code> function description for further information.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>how</code>. How the signal mast will be changed:
<ul>
<li>
<code>SIG_BLOCK</code>:
The resulting set is the union of the current set and the signal set pointed to by <code>set</code>.
</li>
<li>
<code>SIG_UNBLOCK</code>:
The resulting set is the intersection of the current set and the complement of the signal set pointed to by <code>set</code>.
</li>
<li>
<code>SIG_SETMASK</code>:
The resulting set is the signal set pointed to by <code>set</code>.
</li>
</ul>
</li>
<li>
<code>set</code>. Location of the new signal mask.
</li>
<li>
<code>oset</code>. Location to store the old signal mask.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
0 (OK) on succes or EINVAL if <code>how</code> is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<HR>
<H1>3.0 <A NAME="Data_Structures">OS Data Structures</A></H1>
<H2>3.1 Scalar types</H2>
<P>
Many of the types used to communicate with NuttX are simple
scalar types. These types are used to provide architecture independence
of the OS from the application. The scalar types used at the NuttX
interface include:
<UL>
<LI>pid_t
<LI>size_t
<LI>sigset_t
<LI>STATUS
<LI>time_t
</UL>
<H2>3.2 Hidden Interface Structures</H2>
<P>
Several of the types used to interface with NuttX are
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
structures that are intended to be hidden from the application.
From the standpoint of the application, these structures (and
structure pointers) should be treated as simple handles to reference
OS resources. These hidden structures include:
<UL>
<LI>_TCB
<LI>mqd_t
<LI>sem_t
<LI>WDOG_ID
<LI>pthread_key_t
</UL>
<P>
In order to maintain portability, applications should not reference
specific elements within these hidden structures. These hidden
structures will not be described further in this user's manual.
<P>
<H2>3.3. Access to the <I>errno</I> Variable</H2>
<P>
A pointer to the thread-specific <I>errno</I>. value is available through a
function call:
<P>
<B>Function Prototype:</B>
<P>
<PRE> int *get_errno_ptr( void )</PRE>
<P>
<B>Description</B>: <I>osGetErrnorPtr()</I> returns a pointer to
the thread-specific <I>errno</I> value.
<P>
This differs somewhat from the use for errno in a multi-threaded process environment:
Each pthread will have its own private copy of errno and the errno will not be shared
between pthreads.
<P>
<B>Input Parameters</B>: None
<P>
<B>Returned Values</B>:
<P>
<UL>
<LI>A pointer to the thread-specific <I>errno</I> value.
</UL>
<P>
<H2>3.4 User Interface Structures</H2>
<P>
<H3>3.4.1 main_t</H3>
<P>
main_t defines the type of a task entry point. main_t is declared
in sys/types.h as:
<PRE>
typedef int (*main_t)(int argc, char *argv[]);
</PRE>
<H3>3.4.2 struct sched_param</H3>
<P>
This structure is used to pass scheduling priorities to and from
NuttX;
<PRE>
struct sched_param
{
int sched_priority;
};
</PRE>
<H3>3.4.3 struct timespec</H3>
<P>
This structure is used to pass timing information between the
NuttX and a user application:
<PRE>
struct timespec
{
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */
};
</PRE>
<H3>3.4.4 struct mq_attr</H3>
<P>
This structure is used to communicate message queue attributes
between NuttX and a MoBY application:
<PRE>
struct mq_attr {
size_t mq_maxmsg; /* Max number of messages in queue */
size_t mq_msgsize; /* Max message size */
unsigned mq_flags; /* Queue flags */
size_t mq_curmsgs; /* Number of messages currently in queue */
};
</PRE>
<H3>3.4.5 struct sigaction</H3>
<P>
The following structure defines the action to take for given signal:
<PRE>
struct sigaction
{
union
{
void (*_sa_handler)(int);
void (*_sa_sigaction)(int, siginfo_t *, void *);
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
} sa_u;
sigset_t sa_mask;
int sa_flags;
};
#define sa_handler sa_u._sa_handler
#define sa_sigaction sa_u._sa_sigaction
</PRE>
<H3>3.4.6 struct siginfo/siginfo_t</H3>
<P>
The following types is used to pass parameters to/from signal
handlers:
<PRE>
typedef struct siginfo
{
int si_signo;
int si_code;
union sigval si_value;
} siginfo_t;
</PRE>
<H3>3.4.7 union sigval</H3>
<P>
This defines the type of the struct siginfo si_value field and
is used to pass parameters with signals.
<PRE>
union sigval
{
int sival_int;
void *sival_ptr;
};
</PRE>
<H3>3.4.8 struct sigevent</H3>
<P>
The following is used to attach a signal to a message queue to
notify a task when a message is available on a queue.
<PRE>
struct sigevent
{
int sigev_signo;
union sigval sigev_value;
int sigev_notify;
};
</PRE>
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
<H3>3.4.9 Watchdog Data Types</H3>
<p>
When a watchdog expires, the callback function with this
type is called:
</p>
<pre>
typedef void (*wdentry_t)(int argc, ...);
</pre>
<p>
Where argc is the number of uint32 type arguments that follow.
</p>
The arguments are passed as uint32 values.
For systems where the sizeof(pointer) < sizeof(uint32), the
following union defines the alignment of the pointer within the
uint32. For example, the SDCC MCS51 general pointer is
24-bits, but uint32 is 32-bits (of course).
</p>
<pre>
union wdparm_u
{
void *pvarg;
uint32 *dwarg;
};
typedef union wdparm_u wdparm_t;
</pre>
<p>
For most 32-bit systems, pointers and uint32 are the same size
For systems where sizeof(pointer) > sizeof(uint32), we will
have to do some redesign.
</p>
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
<h1><a name="FileSystem">2.10 Filesystem Interfaces</a></h1>
<p>
The NuttX filesystem is very simple; it does not involve any block drivers or
particular filesystem (like FAT or EXT2 etc.).
The NuttX filesystem simply supports a set a filesystem APIs
(<code>open()</code>, <code>close()</code>, <code>read()</code>, <code>write</code>, etc.)
and a registration mechanism that allows devices drivers to a associated with <i>nodes</i>
in a file-system-like name space.
</p>
<h2><a name="driveroperations">2.10.1 Driver Operations</a></h2>
<ul><pre>
#include <fcntl.h>
int open(const char *path, int oflag, ...);
</pre></ul>
<ul><pre>
#include <unistd.h>
int close(int fd);
int dup(int fildes);
int dup2(int fildes1, int fildes2);
off_t lseek(int fd, off_t offset, int whence); /* Prototyped but not implemented */
int read(int fd, void *buf, unsigned int nbytes);
int unlink(const char *path);
int write(int fd, const void *buf, unsigned int nbytes);
</pre></ul>
<ul><pre>
#include <sys/ioctl.h>
int ioctl(int fd, int req, unsigned long arg);
</pre></ul>
<h2><a name="directoryoperations">2.10.2 Directory Operations</a></h2>
<ul><pre>
#include <dirent.h>
int closedir(DIR *dirp);
FAR DIR *opendir(const char *path);
FAR struct dirent *readdir(FAR DIR *dirp);
int readdir_r(FAR DIR *dirp, FAR struct dirent *entry, FAR struct dirent **result);
void rewinddir(FAR DIR *dirp);
void seekdir(FAR DIR *dirp, int loc);
int telldir(FAR DIR *dirp);
</pre></ul>
<h2><a name="standardio">2.10.3 Standard I/O</a></h2>
<ul><pre>
#include <stdio.h>
int fclose(FILE *stream);
int fflush(FILE *stream);
int feof(FILE *stream); /* Prototyped but not implemented */
int ferror(FILE *stream); /* Prototyped but not implemented */
int fgetc(FILE *stream);
char *fgets(char *s, int n, FILE *stream);
FILE *fopen(const char *path, const char *type);
int fprintf(FILE *stream, const char *format, ...);
int fputc(int c, FILE *stream);
int fputs(const char *s, FILE *stream);
size_t fread(void *ptr, size_t size, size_t n_items, FILE *stream);
int fseek(FILE *stream, long int offset, int whence); /* Prototyped but not implemented */
size_t fwrite(const void *ptr, size_t size, size_t n_items, FILE *stream);
char *gets(char *s);
int printf(const char *format, ...);
int puts(const char *s);
int rename(const char *source, const char *target); /* Prototyped but not implemented */
int sprintf(char *dest, const char *format, ...);
int ungetc(int c, FILE *stream);
int vprintf(const char *s, va_list ap);
int vfprintf(FILE *stream, const char *s, va_list ap);
int vsprintf(char *buf, const char *s, va_list ap);
int chdir(const char *path); /* Prototyped but not implemented */
FILE *fdopen(int fd, const char *type);
int fstat(int fd, FAR struct stat *buf); /* Prototyped but not implemented */
char *getcwd(FAR char *buf, size_t size); /* Prototyped but not implemented */
int mkdir(const char *path, mode_t mode); /* Prototyped but not implemented */
int rmdir(const char *path); /* Prototyped but not implemented */
int stat(const char *path, FAR struct stat *buf); /* Prototyped but not implemented */
int statfs(const char *path, FAR struct statfs *buf); /* Prototyped but not implemented */
<li><a href="#clockgetres">clock_getres</a></li>
<li><a href="#clockgettime">clock_gettime</a></li>
<li><a href="#ClocksNTimers">Clocks</a></li>
<li><a href="#clocksettime">clock_settime</a></li>
<li><a href="#Data_Structures">Data structures</a></li>
<li><a href="#directoryoperations">Directory operations</a></li>
<li><a href="#driveroperations">Driver operations</a></li>
<li><a href="#FileSystem">Filesystem interfaces</a></li>
<li><a href="#gmtimer">gmtime_r</a></li>
<li><a href="#Introduction">Introduction</a>
<li><a href="#kill">kill</a></li>
<li><a href="#localtimer">localtime_r</a></li>
<li><a href="#mktime">mktime</a></li>
<li><a href="#mqclose">mq_close</a></li>
<li><a href="#mqgetattr">mq_getattr</a></li>
<li><a href="#mqnotify">mq_notify</a></li>
<li><a href="#mqopen">mq_open</a></li>
<li><a href="#mqreceive">mq_receive</a></li>
<li><a href="#mqsend">mq_send</a></li>
<li><a href="#mqsetattr">mq_setattr</a></li>
<li><a href="#mqunlink">mq_unlink</a></li>
<li><a href="#OS_Interfaces">OS Interfaces</a>
<li><a href="#pthreadattrdestroy">pthread_attr_destroy</a></li>
<li><a href="#pthreadattrgetinheritsched">pthread_attr_getinheritsched</a></li>
<li><a href="#pthreadattrgetschedparam">pthread_attr_getschedparam</a></li>
<li><a href="#pthreadattrgetschedpolicy">pthread_attr_getschedpolicy</a></li>
<li><a href="#pthreadattrgetstacksize">0 pthread_attr_getstacksize</a></li>
<li><a href="#pthreadattrinit">pthread_attr_init</a></li>
<li><a href="#pthreadattrsetinheritsched">pthread_attr_setinheritsched</a></li>
<li><a href="#pthreadattrsetschedparam">pthread_attr_setschedparam</a></li>
<li><a href="#pthreadattrsetschedpolity">pthread_attr_setschedpolicy</a></li>
<li><a href="#pthreadattrsetstacksize">pthread_attr_setstacksize</a></li>
<li><a href="#pthreadbarrierattrinit">pthread_barrierattr_init</a></li>
<li><a href="#pthreadbarrierattrdestroy">pthread_barrierattr_destroy</a></li>
<li><a href="#pthreadbarrierattrgetpshared">pthread_barrierattr_getpshared</a></li>
<li><a href="#pthreadbarrierattrsetpshared">pthread_barrierattr_setpshared</a></li>
<li><a href="#pthreadbarrierdestroy">pthread_barrier_destroy</a></li>
<li><a href="#pthreadbarrierinit">pthread_barrier_init</a></li>
<li><a href="#pthreadbarrierwait">pthread_barrier_wait</a></li>
<li><a href="#pthreadcancel">pthread_cancel</a></li>
<li><a href="#pthreadconaddrinit">pthread_condattr_init</a></li>
<li><a href="#pthreadcondbroadcast">pthread_cond_broadcast</a></li>
<li><a href="#pthreadconddestroy">pthread_cond_destroy</a></li>
<li><a href="#pthreadcondinit">pthread_cond_init</a></li>
<li><a href="#pthreadcondsignal">pthread_cond_signal</a></li>
<li><a href="#pthreadcondtimedwait">pthread_cond_timedwait</a></li>
<li><a href="#pthreadcondwait">pthread_cond_wait</a></li>
<li><a href="#pthreadcreate">pthread_create</a></li>
<li><a href="#pthreaddetach">pthread_detach</a></li>
<li><a href="#pthreadexit">pthread_exit</a></li>
<li><a href="#pthreadgetschedparam">pthread_getschedparam</a></li>
<li><a href="#pthreadgetspecific">pthread_getspecific</a></li>
<li><a href="#Pthread"><i>pthreads</i></a> share some resources.
<li><a href="#pthreadjoin">pthread_join</a></li>
<li><a href="#pthreadkeycreate">pthread_key_create</a></li>
<li><a href="#pthreadkeydelete">pthread_key_delete</a></li>
<li><a href="#pthreadmutexattrdestroy">pthread_mutexattr_destroy</a></li>
<li><a href="#pthreadmutexattrgetpshared">pthread_mutexattr_getpshared</a></li>
<li><a href="#pthreadmutexattrinit">pthread_mutexattr_init</a></li>
<li><a href="#pthreadmutexattrsetpshared">pthread_mutexattr_setpshared</a></li>
<li><a href="#pthreadmutexdestrory">pthread_mutex_destroy</a></li>
<li><a href="#pthreadmutexinit">pthread_mutex_init</a></li>
<li><a href="#pthreadmutexlock">pthread_mutex_lock</a></li>
<li><a href="#pthreadmutextrylock">pthread_mutex_trylock</a></li>
<li><a href="#pthreadmutexunlock">pthread_mutex_unlock</a></li>
<li><a href="#pthreadocndattrdestroy">pthread_condattr_destroy</a></li>
<li><a href="#pthreadself">pthread_self</a></li>
<li><a href="#pthreadsetcancelstate">pthread_setcancelstate</a></li>
<li><a href="#pthreadsetschedparam">pthread_setschedparam</a></li>
<li><a href="#pthreadsetspecific">pthread_setspecific</a></li>
<li><a href="#pthreadsigmask">pthread_sigmask</a></li>
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
<li><a href="#pthreadtestcancelstate">pthread_testcancelstate</a></li>
<li><a href="#pthreadyield">pthread_yield</a></li>
<li><a href="#schedgetparam">sched_getparam</a></li>
<li><a href="#schedgetprioritymax">sched_get_priority_max</a></li>
<li><a href="#schedgetprioritymin">sched_get_priority_min</a></li>
<li><a href="#schedgetrrinterval">sched_get_rr_interval</a></li>
<li><a href="#schedlockcount">sched_lockcount</a></li>
<li><a href="#schedlock">sched_lock</a></li>
<li><a href="#schedsetparam">sched_setparam</a></li>
<li><a href="#schedsetscheduler">sched_setscheduler</a></li>
<li><a href="#schedunlock">sched_unlock</a></li>
<li><a href="#sched_yield">sched_yield</a></li>
<li><a href="#Semaphores">Counting Semaphore Interfaces</a>
<li><a href="#semclose">sem_close</a></li>
<li><a href="#semdestroy">sem_destroy</a></li>
<li><a href="#semgetvalue">sem_getvalue</a></li>
<li><a href="#seminit">sem_init</a></li>
<li><a href="#semopen">sem_open</a></li>
<li><a href="#sempost">sem_post</a></li>
<li><a href="#semtrywait">sem_trywait</a></li>
<li><a href="#semunlink">sem_unlink</a></li>
<li><a href="#semwait">sem_wait</a></li>
<li><a href="#setgetscheduler">sched_getscheduler</a></li>
<li><a href="#sigaction">sigaction</a></li>
<li><a href="#sigaddset">sigaddset</a></li>
<li><a href="#sigdelset">sigdelset</a></li>
<li><a href="#sigemptyset">sigemptyset</a></li>
<li><a href="#sigfillset">sigfillset</a></li>
<li><a href="#sigismember">sigismember</a></li>
<li><a href="#Signals">Signal Interfaces</a>
<li><a href="#sigpending">sigpending</a></li>
<li><a href="#sigprocmask">sigprocmask</a></li>
<li><a href="#sigqueue">sigqueue</a></li>
<li><a href="#sigsuspend">sigsuspend</a></li>
<li><a href="#sigtimedwait">sigtimedwait</a></li>
<li><a href="#sigwaitinfo">sigwaitinfo</a></li>
<li><a href="#standardio">Standard I/O</a></li>
<li><a href="#taskactivate">task_activate</a></li>
<li><a href="#Task_Control">Task Control Interfaces</a>
<li><a href="#taskcreate">task_create</a></li>
<li><a href="#taskdelete">task_delete</a></li>
<li><a href="#taskinit">task_init</a></li>
<li><a href="#taskrestart">task_restart</a></li>
<li><a href="#Task_Schedule">Task Scheduling Interfaces</a>
<li><a href="#Task_Switch">Task Switching Interfaces</a>
<li><a href="#timercreate">timer_create</a></li>
<li><a href="#timerdelete">timer_delete</a></li>
<li><a href="#timergetoverrun">timer_getoverrun</a></li>
<li><a href="#timergettime">timer_gettime</a></li>
<li><a href="#ClocksNTimers">Timers</a></li>
<li><a href="#timersettime">timer_settime</a></li>
<li><a href="#Watchdogs">Watchdog Timer Interfaces</a>
<li><a href="#wdcancel">wd_cancel</a></li>
<li><a href="#wdcreate">wd_create</a></li>
<li><a href="#wddelete">wd_delete</a></li>
<li><a href="#wdgettime">wd_gettime</a></li>