Newer
Older
</ul>
<p>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<p>
<b>Description:</b> When a task has finished with a semaphore,
it will call sem_post(). This function unlocks the semaphore referenced
by <I>sem</I> by performing the semaphore unlock operation.
If the semaphore value resulting from this operation is positive, then
no tasks were blocked waiting for the semaphore to become unlocked;
The semaphore value is simply incremented.
If the value of the semaphore resulting from this operation is zero, then
on of the tasks blocked waiting for the semaphore will be allowed to
return successfully from its call to <I>sem_wait()</I>.
<p>
<b>NOTE</b>: <I>sem_post()</I> may be called from an interrupt handler.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b> This function cannot be called
from an interrupt handler. It assumes the currently executing
task is the one that is performing the unlock.
#include <semaphore.h>
int sem_getvalue ( sem_t *sem, int *sval );
<p>
<b>Description:</b> This function updates the location referenced
by sval argument to have the value of the semaphore referenced
by sem without effecting the state of the semaphore. The updated
value represents the actual semaphore value that occurred at some
unspecified time during the call, but may not reflect the actual
value of the semaphore when it is returned to the calling task.
If sem is locked, the value return by sem_getvalue() will either
be zero or a negative number whose absolute value represents the
number of tasks waiting for the semaphore.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor
<li><I>sval</I>. Buffer by which the value is returned
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
NuttX provides a general watchdog timer facility.
This facility allows the NuttX user to specify a watchdog timer function
that will run after a specified delay.
The watchdog timer function will run in the context of the timer interrupt handler.
Because of this, a limited number of NuttX interfaces are available to he watchdog timer function.
However, the watchdog timer function may use <code>mq_send()</code>, <code>sigqueue()</code>,
or <code>kill()</code> to communicate with NuttX tasks.
</p>
<ul>
<li><a href="#wdcreate">2.6.1 wd_create</a></li>
<li><a href="#wddelete">2.6.2 wd_delete</a></li>
<li><a href="#wdstart">2.6.3 wd_start</a></li>
<li><a href="#wdcancel">2.6.4 wd_cancel</a></li>
<li><a href="#wdgettime">2.6.5 wd_gettime</a></li>
<p>
<b>Description:</b> The wd_create function will create a watchdog
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>Pointer to watchdog that may be used as a handle in subsequent
NuttX calls (i.e., the watchdog ID), or NULL if insufficient resources
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
<ul>
<li>The number of available watchdogs is fixed (configured at
<p>
<b>Description:</b> The wd_delete function will deallocate a
watchdog. The watchdog will be removed from the timer queue if
has been started.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. The watchdog ID to delete. This is actually a
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b> It is the responsibility of the
caller to assure that the watchdog is inactive before deleting
it.
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
<ul>
<li>Does not make any checks to see if the watchdog is being used
STATUS wd_start( WDOG_ID wdog, int delay, wdentry_t wdentry,
intt argc, ....);
<p>
<b>Description:</b> This function adds a watchdog to the timer
queue. The specified watchdog function will be called from the
interrupt level after the specified number of ticks has elapsed.
Watchdog timers may be started from the interrupt level.
Watchdog times execute in the context of the timer interrupt handler, but
with the PIC/PID address environment that was in place when wd_start()
was called.
To replace either the timeout delay or the function to be executed,
call wd_start again with the same wdog; only the most recent
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. Watchdog ID
<li><I>delay</I>. Delay count in clock ticks
<li><I>wdentry</I>. Function to call on timeout
<li><I>argc</I>. The number of uint32 parameters to pass to wdentry.
<li><I>...</I>. uint32 size parameters to pass to wdentry
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b> The watchdog routine runs in the
context of the timer interrupt handler and is subject to all ISR
restrictions.
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
STATUS wdStart (WDOG_ID wdog, int delay, FUNCPTR wdentry, int parameter);
<ul>
<li>The present implementation supports multiple parameters passed
to wdentry; VxWorks supports only a single parameter. The maximum
number of parameters is determined by
<p>
<b>Description:</b> This function cancels a currently running
watchdog timer. Watchdog timers may be canceled from the interrupt
level.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. ID of the watchdog to cancel.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
<h3><a name="wdgettime">2.6.5 wd_gettime</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <wdog.h>
Sint wd_gettime(WDOG_ID wdog);
</pre>
<p>
<b>Description:</b>
This function returns the time remaining before the the specified watchdog expires.
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><code>wdog</code>. Identifies the watchdog that the request is for.</li>
</ul>
</p>
<p>
<b>Returned Value:</b>
The time in system ticks remaining until the watchdog time expires. Zero
means either that wdog is not valid or that the wdog has already expired.
</p>
<ul>
<li><a href="#clocksettime">2.7.1 clock_settime</a></li>
<li><a href="#clockgettime">2.7.2 clock_gettime</a></li>
<li><a href="#clockgetres">2.7.3 clock_getres</a></li>
<li><a href="#mktime">2.7.4 mktime</a></li>
<li><a href="#gmtimer">2.7.5 gmtime_r</a></li>
<li><a href="#localtimer">2.7.6 localtime_r</a></li>
<li><a href="#timercreate">2.7.7 timer_create</a></li>
<li><a href="#timerdelete">2.7.8 timer_delete</a></li>
<li><a href="#timersettime">2.7.9 timer_settime</a></li>
<li><a href="#timergettime">2.7.10 timer_gettime</a></li>
<li><a href="#timergetoverrun">2.7.11 timer_getoverrun</a></li>
</ul>
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_settime(clockid_t clockid, const struct timespec *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_settime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_gettime(clockid_t clockid, struct timespec *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_gettime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_getres(clockid_t clockid, struct timespec *res);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_getres()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
time_t mktime(struct tm *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>mktime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
struct tm *gmtime_r(const time_t *clock, struct tm *result);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>gmtime_r()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<pre>
#include <time.h>
#define localtime_r(c,r) gmtime_r(c,r)
</pre>
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);
</pre>
<p>
<b>Description:</b>
The <code>timer_create()</code> function creates per-thread timer using the specified
clock, <code>clock_id</code>, as the timing base.
The <code>timer_create()</code> function returns, in
the location referenced by <code>timerid</code>, a timer ID of type timer_t used to identify
the timer in timer requests.
This timer ID is unique until the timer is deleted.
The particular clock, <code>clock_id<code>, is defined in <code><time.h><code>.
The timer whose ID is returned will be in a disarmed state upon return from
<code>timer_create()</code>.
</p>
<p>
The <code>evp</code> argument, if non-NULL, points to a <code>sigevent</code> structure.
This structure is allocated by the called and defines the asynchronous notification to occur.
If the <code>evp</code> argument is NULL, the effect is as if the <code>evp</code> argument pointed to
a <code>sigevent</code> structure with the <code>sigev_notify</code> member having the value <code>SIGEV_SIGNAL</code>,
the <code>sigev_signo</code> having a default signal number, and the <code>sigev_value</code> member
having the value of the timer ID.
</p>
<p>
Each implementation defines a set of clocks that can be used as timing bases
for per-thread timers. All implementations shall support a <code>clock_id</code> of
<code>CLOCK_REALTIME</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>clockid</code>. Specifies the clock to use as the timing base.
Must be <code>CLOCK_REALTIME</code>.</li>
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
<li><code>evp</code>. Refers to a user allocated sigevent structure that defines the
asynchronous notification. evp may be NULL (see above).</li>
<li><code>timerid</code>. The pre-thread timer created by the call to timer_create().</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If the call succeeds, <code>timer_create()</code> will return 0 (<code>OK</code>) and update the
location referenced by <code>timerid</code> to a <code>timer_t</code>, which can be passed to the
other per-thread timer calls. If an error occurs, the function will return
a value of -1 (<code>ERROR</code>) and set errno to indicate the error.
</p>
<ul>
<li><code>EAGAIN</code>. The system lacks sufficient signal queuing resources to honor the
request.</li>
<li><code>EAGAIN</code>. The calling process has already created all of the timers it is
allowed by this implementation.</li>
<li><code>EINVAL</code>. The specified clock ID is not defined.</li>
<li><code>ENOTSUP</code>. The implementation does not support the creation of a timer attached
to the CPU-time clock that is specified by clock_id and associated with a
thread different thread invoking timer_create().</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>Only <code>CLOCK_REALTIME</code> is supported for the <code>clockid</code> argument.</li>
</ul>
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_delete(timer_t timerid);
</pre>
<p>
<b>Description:</b>
The <code>timer_delete()</code> function deletes the specified timer, <code>timerid</code>, previously
created by the <code>timer_create()</code> function.
If the timer is armed when <code>timer_delete()</code> is called, the timer will be automatically disarmed before
removal.
The disposition of pending signals for the deleted timer is unspecified.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>.
The pre-thread timer, previously created by the call to timer_create(), to be deleted.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>timer_delete()</I> function will return zero (<I>OK</I>).
Otherwise, the function will return a value of -1 (ERROR) and set errno to indicate the error:
</p>
<ul>
<li><code>EINVAL</code>. The timer specified timerid is not valid.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
struct itimerspec *ovalue);
</pre>
<p>
<b>Description:</b>
The <code>timer_settime()</code> function sets the time until the next expiration of the
timer specified by <code>timerid</code> from the <code>it_value</code> member of the value argument
and arm the timer if the <code>it_value</code> member of value is non-zero. If the
specified timer was already armed when <code>timer_settime()</code> is called, this call
will reset the time until next expiration to the value specified. If the
<code>it_value</code> member of value is zero, the timer will be disarmed. The effect
of disarming or resetting a timer with pending expiration notifications is
unspecified.
</p>
<p>
If the flag <code>TIMER_ABSTIME</code> is not set in the argument flags, <code>timer_settime()</code>
will behave as if the time until next expiration is set to be equal to the
interval specified by the <code>it_value</code> member of value. That is, the timer will
expire in <code>it_value</code> nanoseconds from when the call is made. If the flag
<code>TIMER_ABSTIME</code> is set in the argument flags, <code>timer_settime()</code> will behave as
if the time until next expiration is set to be equal to the difference between
the absolute time specified by the <code>it_value</code> member of value and the current
value of the clock associated with <code>timerid</code>. That is, the timer will expire
when the clock reaches the value specified by the <code>it_value</code> member of value.
If the specified time has already passed, the function will succeed and the
expiration notification will be made.
</p>
<p>
The reload value of the timer will be set to the value specified by the
<code>it_interval</code> member of value. When a timer is armed with a non-zero
<code>it_interval</code>, a periodic (or repetitive) timer is specified.
</p>
<p>
Time values that are between two consecutive non-negative integer multiples
of the resolution of the specified timer will be rounded up to the larger
multiple of the resolution. Quantization error will not cause the timer to
expire earlier than the rounded time value.
</p>
<p>
If the argument <code>ovalue</code> is not NULL, the t<code>imer_settime()</code> function will store,
in the location referenced by <code>ovalue</code>, a value representing the previous
amount of time before the timer would have expired, or zero if the timer was
disarmed, together with the previous timer reload value. Timers will not
expire before their scheduled time.
</p>
<b>NOTE:</b>At present, the <code>ovalue</code> argument is ignored.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. The pre-thread timer, previously created by the call to timer_create(), to be be set.</li>
<li><code>flags</code>. Specifie characteristics of the timer (see above)</li>
<li><code>value</code>. Specifies the timer value to set</li>
<li><code>ovalue</code>. A location in which to return the time remaining from the previous timer setting (ignored).</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If the timer_gettime() succeeds, a value of 0 (OK) will be returned.
If an error occurs, the value -1 (ERROR) will be returned, and errno set to indicate the error.
</p>
<ul>
<li><code>EINVAL</code>. The timerid argument does not correspond to an ID returned by timer_create() but not yet deleted by timer_delete().</li>
<li><code>EINVAL</code>. A value structure specified a nanosecond value less than zero or greater than or equal to 1000 million,
and the it_value member of that structure did not specify zero seconds and nanoseconds.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>The <code>ovalue</code> argument is ignored.</li>
</ul>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_gettime(timer_t timerid, struct itimerspec *value);
</pre>
<p>
<b>Description:</b>
The <code>timer_gettime()</code> function will store the amount of time until the
specified timer, <code>timerid</code>, expires and the reload value of the timer into the
space pointed to by the <code>value</code> argument. The <code>it_value</code> member of this structure
will contain the amount of time before the timer expires, or zero if the timer
is disarmed. This value is returned as the interval until timer expiration,
even if the timer was armed with absolute time. The <code>it_interval</code> member of
<code>value</code> will contain the reload value last set by <code>timer_settime()</code>.
</p>
<p>
Due to the asynchronous operation of this function, the time reported
by this function could be significantly more than that actual time
remaining on the timer at any time.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. Specifies pre-thread timer, previously created by the call to
t<code>imer_create()</code>, whose remaining count will be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>timer_gettime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>EINVAL</code>.
The <code>timerid</code> argument does not correspond to an ID returned by
<code>timer_create()</code> but not yet deleted by <code>timer_delete()</code>.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_getoverrun(timer_t timerid);
</pre>
<p>
<b>Description:</b>
Only a single signal will be queued to the process for a given timer at any
point in time. When a timer for which a signal is still pending expires, no
signal will be queued, and a timer overrun will occur. When a timer
expiration signal is delivered to or accepted by a process, if the
implementation supports the <i>Realtime Signals Extension</i>, the
<code>timer_getoverrun()</code> function will return the timer expiration overrun count for
the specified timer. The overrun count returned contains the number of extra
timer expirations that occurred between the time the signal was generated
(queued) and when it was delivered or accepted, up to but not including an
implementation-defined maximum of <code>DELAYTIMER_MAX</code>. If the number of such
extra expirations is greater than or equal to <code>DELAYTIMER_MAX</code>, then the
overrun count will be set to <code>DELAYTIMER_MAX</code>. The value returned by
<code>timer_getoverrun()</code> will apply to the most recent expiration signal delivery
or acceptance for the timer. If no expiration signal has been delivered
for the timer, or if the <i>Realtime Signals Extension</i> is not supported, the
return value of <code>timer_getoverrun()</code> is unspecified.
</p>
<p>
<b>NOTE:</b> This interface is not currently implemented in NuttX.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. Specifies pre-thread timer, previously created by the call to
<code>timer_create()</code>, whose overrun count will be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
If the <code>timer_getoverrun()</code> function succeeds, it will return the timer
expiration overrun count as explained above. <code>timer_getoverrun()</code> will fail if:
</p>
<ul>
<li><code>EINVAL</code>.
The <code>timerid</code> argument does not correspond to an ID returned by
<code>timer_create()</code> but not yet deleted by <code>timer_delete()</code>.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>This interface is not currently implemented by NuttX.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
<p>
NuttX provides signal interfaces for tasks. Signals are used to
alter the flow control of tasks by communicating asynchronous events
within or between task contexts.
Any task or interrupt handler can post (or send) a signal to a particular task.
The task being signaled will execute task-specified signal handler
function the next time that the task has priority.
The signal handler is a user-supplied function that is bound to
a specific signal and performs whatever actions are necessary
whenever the signal is received.
</p>
<p>
There are no predefined actions for any signal.
The default action for all signals (i.e., when no signal handler has
been supplied by the user) is to ignore the signal.
In this sense, all NuttX are <i>real time</i> signals.
</p>
<p>
Tasks may also suspend themselves and wait until a signal is received.
</p>
<p>
The following signal handling interfaces are provided by NuttX:
</p>
<ul>
<li><a href="#sigemptyset">2.8.1 sigemptyset</a></li>
<li><a href="#sigfillset">2.8.2 sigfillset</a></li>
<li><a href="#sigaddset">2.8.3 sigaddset</a></li>
<li><a href="#sigdelset">2.8.4 sigdelset</a></li>
<li><a href="#sigismember">2.8.5 sigismember</a></li>
<li><a href="#sigaction">2.8.6 sigaction</a></li>
<li><a href="#sigprocmask">2.8.7 sigprocmask</a></li>
<li><a href="#sigpending">2.8.8 sigpending</a></li>
<li><a href="#sigsuspend">2.8.9 sigsuspend</a></li>
<li><a href="#sigwaitinfo">2.8.10 sigwaitinfo</a></li>
<li><a href="#sigtimedwait">2.8.11 sigtimedwait</a></li>
<li><a href="#sigqueue">2.8.12 sigqueue</a></li>
<li><a href="#kill">2.8.13 kill</a></li>
<H3><a name="sigemptyset">2.8.1 sigemptyset</a></H3>
<p>
<b>Description:</b> This function initializes the signal set specified
by set such that all signals are excluded.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to initialize.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal set cannot be initialized.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigfillset">2.8.2 sigfillset</a></H3>
<p>
<b>Description:</b> This function initializes the signal set specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to initialize
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal set cannot be initialized.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigaddset">2.8.3 sigaddset</a></H3>
#include <signal.h>
int sigaddset(sigset_t *set, int signo);
<p>
<b>Description:</b> This function adds the signal specified by
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to add signal to
<li><I>signo</I>. Signal to add
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigdelset">2.8.4 sigdelset</a></H3>
#include <signal.h>
int sigdelset(sigset_t *set, int signo);
<p>
<b>Description:</b> This function deletes the signal specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to delete the signal from
<li><I>signo</I>. Signal to delete
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigismember">2.8.5 sigismember</a></H3>
#include <signal.h>
int sigismember(const sigset_t *set, int signo);
<p>
<b>Description:</b> This function tests whether the signal specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to test
<li><I>signo</I>. Signal to test for
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>1 (TRUE), if the specified signal is a member of the set,
<li>0 (OK or FALSE), if it is not, or
<li>-1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigaction">2.8.6 sigaction</a></H3>
#include <signal.h>
int sigaction( int signo, const struct sigaction *act,
struct sigaction *oact );
<p>
<b>Description:</b> This function allows the calling task to
examine and/or specify the action to be associated with a specific
signal.
The structure sigaction, used to describe an action to be taken, is defined
to include the following members:
<ul>
<li><I>sa_u.sa_handler</I>. A pointer to a signal-catching function.
<li><I>sa_u.sa_sigaction</I>. An alternative form for the signal catching
<li><I>sa_flags</I>: Special flags to affect behavior of a signal.
</ul>
<p>
If the argument act is not NULL, it points to a structure specifying the
action to be associated with the specified signal. If the argument oact
is not NULL, the action previously associated with the signal is stored
in the location pointed to by the argument oact. If the argument act is
NULL, signal handling is unchanged by this function call; thus, the call