Skip to content
Bezier.py 33.6 KiB
Newer Older
####################################################################################################
#
Fabrice Salvaire's avatar
Fabrice Salvaire committed
# Patro - A Python library to make patterns for fashion design
# Copyright (C) 2017 Fabrice Salvaire
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
####################################################################################################

Fabrice Salvaire's avatar
Fabrice Salvaire committed
r"""Module to implement Bézier curve.

Fabrice Salvaire's avatar
Fabrice Salvaire committed
For resources on Bézier curve see :ref:`this section <bezier-geometry-ressources-page>`.
Fabrice Salvaire's avatar
Fabrice Salvaire committed

Fabrice Salvaire's avatar
Fabrice Salvaire committed
# Fixme:
#   max distance to the chord for linear approximation
#   fitting

# C0 = continuous
# G1 = geometric continuity
#    Tangents point to the same direction
# C1 = parametric continuity
#    Tangents are the same, implies G1
# C2 = curvature continuity
#    Tangents and their derivatives are the same

####################################################################################################

Fabrice Salvaire's avatar
Fabrice Salvaire committed
__all__ = [
    'QuadraticBezier2D',
    'CubicBezier2D',
]

####################################################################################################

from math import log, sqrt
import numpy as np

from Patro.Common.Math.Root import quadratic_root, cubic_root, fifth_root
Fabrice Salvaire's avatar
Fabrice Salvaire committed
from .Interpolation import interpolate_two_points
from .Line import Line2D
from .Primitive import Primitive3P, Primitive4P, PrimitiveNP, Primitive2DMixin
from .Transformation import AffineTransformation
from .Vector import Vector2D

####################################################################################################

class BezierMixin2D(Primitive2DMixin):
    """Mixin to implements 2D Bezier Curve."""
    ##############################################

    def interpolated_length(self, dt=None):

Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Length of the curve obtained via line interpolation"""

        if dt is None:
            dt = self.LineInterpolationPrecision / (self.end_point - self.start_point).magnitude

        length = 0
        t = 0
        while t < 1:
            t0 = t
            t = min(t + dt, 1)
            length += (self.point_at_t(t) - self.point_at_t(t0)).magnitude

        return length

    ##############################################

    def length_at_t(self, t, cache=False):

        """Compute the length of the curve at *t*."""

        if cache: # lookup cache
            if not hasattr(self, '_length_cache'):
                self._length_cache = {}
            length = self._length_cache.get(t, None)
            if length is not None:
                return length

        length = self.split_at_t(t).length

        if cache: # save
            self._length_cache[t] = length

        return length

    ##############################################

    def t_at_length(self, length, precision=1e-6):

        """Compute t for the given length. Length must lie in [0, curve length] range]. """

        if length < 0:
            raise ValueError('Negative length')
        if length == 0:
            return 0
        curve_length = self.length # Fixme: cache ?
        if (curve_length - length) <= precision:
            return 1
        if length > curve_length:
            raise ValueError('Out of length')

        # Search t for length using dichotomy
        # convergence rate :
        #  10 iterations corresponds to curve length / 1024
        #  16                                        / 65536
        # start range
        inf = 0
        sup = 1
        while True:
            middle = (sup + inf) / 2
            length_at_middle = self.length_at_t(middle, cache=True) # Fixme: out of memory, use LRU ???
            # exit condition
            if abs(length_at_middle - length) <= precision:
                return middle
            elif length_at_middle < length:
                inf = middle
            else: # length < length_at_middle
                sup = middle

    ##############################################

    def split_at_two_t(self, t1, t2):

        if t1 == t2:
            return self.point_at_t(t1)

        if t2 < t1:
            # Fixme: raise ?
            t1, t2 = t2, t1

        # curve = self
        # if t1 > 0:
        curve = self.split_at_t(t1)[1] # right
        if t2 < 1:
            # Interpolate the parameter at t2 in the new curve
            t = (t2 - t1) / (1 - t1)
            curve = curve.split_at_t(t)[0] # left

        return curve

    ##############################################

    def _map_to_line(self, line):

        transformation = AffineTransformation.Rotation(-line.v.orientation)
        # Fixme: use __vector_cls__
        transformation *= AffineTransformation.Translation(Vector2D(0, -line.p.y))
        # Fixme: better API ?
        return self.clone().transform(transformation)

    ##############################################

    def non_parametric_curve(self, line):

        """Return the non-parametric Bezier curve D(ti, di(t)) where di(t) is the distance of the curve from
        the baseline of the fat-line, ti is equally spaced in [0, 1].

        """

        ts = np.arange(0, 1, 1/(self.number_of_points-1))
        distances = [line.distance_to_line(p) for p in self.points]
        points = [Vector2D(t, d) for t, f in zip(ts, distances)]
        return self.__class__(*points)

    ##############################################

    def distance_to_point(self, point):

        p = self.closest_point(point)
        if p is not None:
            return (point - p).magnitude
        else:
            return None

####################################################################################################

class QuadraticBezier2D(BezierMixin2D, Primitive3P):

    """Class to implements 2D Quadratic Bezier Curve."""

    BASIS = np.array((
        (1, -2,  1),
        (0,  2, -2),
        (0,  0,  1),
    ))

    INVERSE_BASIS = np.array((
        (-2,  1, -2),
        (-1, -3,  1),
        (-1, -1, -2),
    ))

    ##############################################

    def __init__(self, p0, p1, p2):
        Primitive3P.__init__(self, p0, p1, p2)
Fabrice Salvaire's avatar
Fabrice Salvaire committed

    ##############################################

    def __repr__(self):
        return self.__class__.__name__ + '({0._p0}, {0._p1}, {0._p2})'.format(self)

    ##############################################

    @property
    def length(self):

        r"""Compute the length of the curve.

        Algorithm

          * http://www.gamedev.net/topic/551455-length-of-a-generalized-quadratic-bezier-curve-in-3d
          * Dave Eberly Posted October 25, 2009

        The quadratic Bezier is

        .. math::
            \mathbf{B}(t) = (1-t)^2 \mathbf{P}_0 + 2t(1-t) \mathbf{P}_1 + t^2 \mathbf{P}_2

        The derivative is

        .. math::
            \mathbf{B'}(t) = -2(1-t) \mathbf{P}_0 + (2-4t) \mathbf{P}_1 + 2t \mathbf{P}_2

        The length of the curve for :math:`0 <= t <= 1` is

        .. math::
            \int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2} dt

        The integrand is of the form :math:`\sqrt{c t^2 + b t + a}`

        You have three separate cases: :math:`c = 0`, :math:`c > 0`, or :math:`c < 0`.

        The case :math:`c = 0` is easy.

        For the case :math:`c > 0`, an antiderivative is

        .. math::
            \frac{2ct + b}{4c} \sqrt{ct^2 + bt + a}  +  \frac{k}{2\sqrt{c}} \ln{\left(2\sqrt{c(ct^2 + bt + a)} + 2ct + b\right)}

        For the case :math:`c < 0`, an antiderivative is

        .. math::
            \frac{2ct + b}{4c} \sqrt{ct^2 + bt + a}  -  \frac{k}{2\sqrt{-c}} \arcsin{\frac{2ct + b}{\sqrt{-q}}}

        where :math:`k = \frac{4c}{q}` with :math:`q = 4ac - b^2`.

        """
        A0 = self._p1 - self._p0
        A1 = self._p0 - self._p1 * 2 + self._p2
        if A1.magnitude_square != 0:
            c = 4 * A1.dot(A1)
            b = 8 * A0.dot(A1)
            a = 4 * A0.dot(A0)
            q = 4 * a * c - b * b
            two_cb = 2 * c + b
            sum_cba = c + b + a
            m0 = 0.25 / c
            m1 = q / (8 * c**1.5)
            return (m0 * (two_cb * sqrt(sum_cba) - b * sqrt(a)) +
                    m1 * (log(2 * sqrt(c * sum_cba) + two_cb) - log(2 * sqrt(c * a) + b)))
        else:
            return 2 * A0.magnitude

    ##############################################

    def point_at_t(self, t):
        # if 0 < t or 1 < t:
        #     raise ValueError()
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        u = 1 - t
        return self._p0 * u**2 + self._p1 * 2 * t * u + self._p2 * t**2

    ##############################################

    def split_at_t(self, t):

Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Split the curve at given position"""
        if t <= 0:
            return None, self
        elif t >= 1:
            return self, None
        else:
            p01 = interpolate_two_points(self._p0, self._p1, t)
            p12 = interpolate_two_points(self._p1, self._p2, t)
            p = interpolate_two_points(p01, p12, t) # p = p012
            # p = self.point_at_t(t)
            return (QuadraticBezier2D(self._p0, p01, p), QuadraticBezier2D(p, p12, self._p2))

Fabrice Salvaire's avatar
Fabrice Salvaire committed
   ##############################################
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    @property
    def tangent0(self):
        return (self._p1 - self._p0).normalise()
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    ##############################################

    @property
    def tangent1(self):
        return (self._p2 - self._p1).normalise()

    ##############################################

    @property
    def normal0(self):
        return self.tangent0.normal()

    ##############################################

    @property
    def tangent1(self):
        return self.tangent1.normal()

    ##############################################

    def tangent_at(self, t):
        u = 1 - t
        return (self._p1 - self._p0) * u + (self._p2 - self._p1) * t
    ##############################################

    def intersect_line(self, line):

Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Find the intersections of the curve with a line.
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        Algorithm

        * Apply a transformation to the curve that maps the line onto the X-axis.
        * Then we only need to test the Y-values for a zero.

        """

        # u = 1 - t
        # B = p0 * u**2  +  p1 * 2*t*u  +  p2 * t**2
        # collect(expand(B), t)
        # solveset(B, t)

        curve = self._map_to_line(line)

        p0 = curve.p0.y
        p1 = curve.p1.y
        p2 = curve.p2.y

        return quadratic_root(
            p2 - 2*p1 + p0, # t**2
            2*(p1 - p0),    # t
            p0,
        )

        ### a = p0 - 2*p1 + p2 # t**2
        ### # b = 2*(-p0 + p1) # t
        ### b = -p0 + p1 # was / 2 !!!
        ### c = p0
        ###
        ### # discriminant = b**2 - 4*a*c
        ### # discriminant = 4 * (p1**2 - p0*p2)
        ### discriminant = p1**2 - p0*p2 # was / 4 !!!
        ###
        ### if discriminant < 0:
        ###     return None
        ### elif discriminant == 0:
        ###     return -b / a # dropped 2
        ### else:
        ###      # dropped 2
        ###     y1 = (-b - sqrt(discriminant)) / a
        ###     y2 = (-b + sqrt(discriminant)) / a
        ###     return y1, y2

    ##############################################

    def fat_line(self):

        line = Line2D.from_two_points(self._p0, self._p3)
        d1 = line.distance_to_line(self._p1)
        d_min = min(0, d1 / 2)
        d_max = max(0, d1 / 2)

        return (line, d_min, d_max)

    ##############################################

    def closest_point(self, point):

Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Return the closest point on the curve to the given *point*.

        Reference

        * https://hal.archives-ouvertes.fr/inria-00518379/document
          Improved Algebraic Algorithm On Point Projection For Bézier Curves
          Xiao-Diao Chen, Yin Zhou, Zhenyu Shu, Hua Su, Jean-Claude Paul

        """

        # Condition:
        #   (P - B(t)) . B'(t) = 0   where t in [0,1]
        #
        #   P. B'(t) - B(t). B'(t) = 0

        # A = P1 - P0
        # B = P2 - P1 - A
        # M = P0 - P

        # Q(t)  = P0*(1-t)**2 + P1*2*t*(1-t) + P2*t**2
        # Q'(t) = -2*P0*(1 - t) + 2*P1*(1 - 2*t) + 2*P2*t
        #       = 2*(A + B*t)

        # Q = P0 * (1-t)**2  +  P1 * 2*t*(1-t)  +  P2 * t**2
        # Qp = simplify(Q.diff(t))
        # collect(expand((P*Qp - Q*Qp)/-2), t)

        # (P0**2 - 4*P0*P1 + 2*P0*P2 + 4*P1**2 - 4*P1*P2 + P2**2) * t**3
        # (-3*P0**2 + 9*P0*P1 - 3*P0*P2 - 6*P1**2 + 3*P1*P2) * t**2
        # (-P*P0 + 2*P*P1 - P*P2 + 3*P0**2 - 6*P0*P1 + P0*P2 + 2*P1**2) * t
        # P*P0 - P*P1 - P0**2 + P0*P1

        # factorisation
        # (P0 - 2*P1 + P2)**2 * t**3
        # 3*(P1 - P0)*(P0 - 2*P1 + P2) * t**2
        # ...
        # (P0 - P)*(P1 - P0)

        # B**2 * t**3
        # 3*A*B * t**2
        # (2*A**2 + M*B) * t
        # M*A

        A = self._p1 - self._p0
        B = self._p2 - self._p1 - A
        M = self._p0 - point

        roots = cubic_root(
            B.magnitude_square,
            3*A.dot(B),
            2*A.magnitude_square + M.dot(B),
            M.dot(A),
        )
        t = [root for root in roots if 0 <= root <= 1]
        if not t:
            return None
        elif len(t) > 1:
            # Fixme: crash application !!!
Fabrice Salvaire's avatar
Fabrice Salvaire committed
            raise NameError("Found more than one root: {}".format(t))
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    ##############################################

    def to_cubic(self):

        r"""Elevate the quadratic Bézier curve to a cubic Bézier cubic with the same shape.

        The new control points are

        .. math::
            \begin{align}
            \mathbf{P'}_0 &= \mathbf{P}_0 \\
            \mathbf{P'}_1 &= \mathbf{P}_0 + \frac{2}{3} (\mathbf{P}_1 - \mathbf{P}_0) \\
            \mathbf{P'}_1 &= \mathbf{P}_2 + \frac{2}{3} (\mathbf{P}_1 - \mathbf{P}_2) \\
            \mathbf{P'}_2 &= \mathbf{P}_2
            \end{align}

        """

        p1 = (self._p0 + self._p1 * 2) / 3
        p2 = (self._p2 + self._p1 * 2) / 3

        return CubicBezier2D(self._p0, p1, p2, self._p3)
Fabrice Salvaire's avatar
Fabrice Salvaire committed

####################################################################################################

_Sqrt3 = sqrt(3)
_Div18Sqrt3 = 18 / _Sqrt3
_OneThird = 1 / 3
_Sqrt3Div36 = _Sqrt3 / 36

class CubicBezier2D(BezierMixin2D, Primitive4P):
Fabrice Salvaire's avatar
Fabrice Salvaire committed
    """Class to implements 2D Cubic Bezier Curve."""
    BASIS = np.array((
        (1, -3,  3, -1),
        (0,  3, -6,  3),
        (0,  0,  3, -3),
        (0,  0,  0,  1),
    ))
    INVERSE_BASIS = np.array((
        (1,    1,   1, 1),
        (0,  1/3, 2/3, 1),
        (0,    0, 1/3, 1),
        (0,    0,   0, 1),
    ))

    #######################################

    def __init__(self, p0, p1, p2, p3):
        Primitive4P.__init__(self, p0, p1, p2, p3)
Fabrice Salvaire's avatar
Fabrice Salvaire committed

    ##############################################

    def __repr__(self):
        return self.__class__.__name__ + '({0._p0}, {0._p1}, {0._p2}, {0._p3})'.format(self)

    ##############################################

    def to_spline(self):
        from .Spline import CubicUniformSpline2D
        basis = np.dot(self.BASIS, CubicUniformSpline2D.INVERSE_BASIS)
        points = np.dot(self.point_array, basis).transpose()
        return CubicUniformSpline2D(*points)

    ##############################################

    @property
    def length(self):
        return self.adaptive_length_approximation()

    ##############################################

    def point_at_t(self, t):
        # if 0 < t or 1 < t:
        #     raise ValueError()
        return (self._p0 +
                (self._p1 - self._p0) * 3 * t  +
Fabrice Salvaire's avatar
Fabrice Salvaire committed
                (self._p2 - self._p1*2 + self._p0) * 3 * t**2 +
                (self._p3 - self._p2*3 + self._p1*3 - self._p0) * t**3)
    ##############################################

    def _q_point(self):
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Return the control point for mid-point quadratic approximation"""
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        return (self._p2*3 - self._p3 + self._p1*3 - self._p0) / 4

    ##############################################

    def mid_point_quadratic_approximation(self):
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Return the mid-point quadratic approximation"""
        p1 = self._q_point()
        return QuadraticBezier2D(self._p0, p1, self._p3)

    ##############################################

    def split_at_t(self, t):

Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Split the curve at given position"""
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        p01 = interpolate_two_points(self._p0, self._p1, t)
        p12 = interpolate_two_points(self._p1, self._p2, t)
        p23 = interpolate_two_points(self._p2, self._p3, t)
        p012 = interpolate_two_points(p01, p12, t)
        p123 = interpolate_two_points(p12, p23, t)
        p = interpolate_two_points(p012, p123, t) # p = p0123
        # p = self.point_at_t(t)
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        return (CubicBezier2D(self._p0, p01, p012, p), CubicBezier2D(p, p123, p23, self._p3))

    ##############################################

    def _d01(self):
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Return the distance between 0 and 1 quadratic aproximations"""
        return (self._p3 - self._p2 * 3 + self._p1 * 3 - self._p0).magnitude / 2

    ##############################################

    def _t_max(self):
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Return the split point for adaptive quadratic approximation"""
        return (_Div18Sqrt3 * self.InterpolationPrecision / self._d01())**_OneThird

    ##############################################

    def q_length(self):
Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Return the length of the mid-point quadratic approximation"""
        return self.mid_point_quadratic_approximation().length

    ##############################################

    def adaptive_length_approximation(self):

Fabrice Salvaire's avatar
Fabrice Salvaire committed
        """Return the length of the adaptive quadratic approximation"""

        segments = []
        segment = self
        t_max = segment._t_max()
        while t_max < 1:
            split = segment.split_at_t(t_max)
            segments.append(split[0])
            segment = split[1]
            t_max = segment._t_max()
        segments.append(segment)

        return sum([segment.q_length() for segment in segments])

Fabrice Salvaire's avatar
Fabrice Salvaire committed
    ##############################################

    @property
    def tangent1(self):
        return (self._p3 - self._p2).normalise()

    ##############################################

Fabrice Salvaire's avatar
Fabrice Salvaire committed
    def tangent_at(self, t):
        u = 1 - t
        return (self._p1 - self._p0) * u**2 + (self._p2 - self._p1) * 2 * t * u + (self._p3 - self._p2) * t**2

    ##############################################

    def intersect_line(self, line):

        """Find the intersections of the curve with a line."""

        # Algorithm: same as for quadratic

        # u = 1 - t
        # B = p0 *     u**3        +
        #     p1 * 3 * u**2 * t    +
        #     p2 * 3 * u    * t**2 +
        #     p3 *            t**3
        # B = p0 +
        #    (p1 - p0) * 3 * t  +
        #    (p2 - p1 * 2 + p0) * 3 * t**2 +
        #    (p3 - p2 * 3 + p1 * 3 - p0) * t**3
        # solveset(B, t)

        curve = self._map_to_line(line)

        p0 = curve.p0.y
        p1 = curve.p1.y
        p2 = curve.p2.y
        p3 = curve.p3.y

        return cubic_root(
            p3 - 3*p2 + 3*p1 - p0,
            3 * (p2 - p1 * 2 + p0),
            3 * (p1 - p0),
            p0,
        )

    ##############################################

    def fat_line(self):

        line = Line2D.from_two_points(self._p0, self._p3)
        d1 = line.distance_to_line(self._p1)
        d2 = line.distance_to_line(self._p2)
        if d1*d2 > 0:
            factor = 3 / 4
        else:
            factor = 4 / 9
        d_min = factor * min(0, d1, d2)
        d_max = factor * max(0, d1, d2)

        return (line, d_min, d_max)

    ##############################################

    def _clipping_convex_hull(self):

        line_03 = Line2D(self._p0, self._p3)
        d1 = line_03.distance_to_line(self._p1)
        d2 = line_03.distance_to_line(self._p2)

        # Check if p1 and p2 are on the same side of the line [p0, p3]
        if d1 * d2 < 0:
            # p1 and p2 lie on different sides of [p0, p3].
            # The hull is a quadrilateral and line [p0, p3] is not part of the hull.
            # The top part includes p1, we will reverse it later if that is not the case.
            hull = [
                [self._p0, self._p1, self._p3], # top part
                [self._p0, self._p2, self._p3]  # bottom part
            ]
            flip = d1 < 0
        else:
            # p1 and p2 lie on the same sides of [p0, p3]. The hull can be a triangle or a
            # quadrilateral and line [p0, p3] is part of the hull.  Check if the hull is a triangle
            # or a quadrilateral.  Also, if at least one of the distances for p1 or p2, from line
            # [p0, p3] is zero then hull must at most have 3 vertices.
             # Fixme: check cross product
            y0, y1, y2, y3 = [p.y for p in self.points]
            if abs(d1) < abs(d2):
                pmax = p2;
                # apex is y0 in this case, and the other apex point is y3
                # vector yapex -> yapex2 or base vector which is already part of the hull
                # V30xV10 * V10xV20
                cross_product = ((y1 - y0) - (y3 - y0)/3) * (2*(y1 - y0) - (y2 - y0)) /3
            else:
                pmax = p1;
                # apex is y3 and the other apex point is y0
                # vector yapex -> yapex2 or base vector which is already part of the hull
                # V32xV30 * V32xV31
                cross_product = ((y3 - y2) - (y3 - y0)/3) * (2*(y3 - y2) - (y3 + y1)) /3

            # Compare cross products of these vectors to determine if the point is in the triangle
            # [p3, pmax, p0], or if it is a quadrilateral.
            has_null_distance = d1 == 0 or d2 == 0 # Fixme: don't need to compute cross_product
            if cross_product < 0 or has_null_distance:
                # hull is a triangle
                hull = [
                    [self._p0, pmax, self._p3], # top part is a triangle
                    [self._p0, self._p3],       # bottom part is just an edge
                ]
            else:
                hull = [
                    [self._p0, self._p1, self._p2, self._p3], # top part is a quadrilateral
                    [self._p0, self._p3],                     # bottom part is just an edge
                ]
            flip =  d1 < 0 if d1 else d2 < 0

        if flip:
            hull.reverse()

        return hull

    ##############################################

    @staticmethod
    def _clip_convex_hull(hull_top, hull_bottom, d_min, d_max) :


        #              Top   /----
        #                   /     ---/
        #                  /        /
        # d_max -------------------*---
        #                /        / t_max
        #         t_min /        /
        # d_min -------*---------------
        #             /        /
        #            /    ----/   Bottom
        #        p0 /----

        if (hull_top[0].y < d_min):
            # Left of hull is below d_min,
            # walk through the hull until it enters the region between d_min and d_max
            return self._clip_convex_hull_part(hull_top, True, d_min);
        elif (hull_bottom[0].y > d_max) :
            # Left of hull is above d_max,
            # walk through the hull until it enters the region between d_min and d_max
            return self._clip_convex_hull_part(hull_bottom, False, d_max);
        else :
            # Left of hull is between d_min and d_max, no clipping possible
            return hull_top[0].x; # Fixme: 0 ???

    ##############################################

    @staticmethod
    def _clip_convex_hull_part(part, top, threshold) :

        """Clip the bottom or top part of the convex hull.

        *part* is a list of points, *top* is a boolean flag to indicate if it corresponds to the top
        part, *threshold* is d_min if top part else d_max.

        """

        # Walk on the edges
        px = part[0].x;
        py = part[0].y;
        for i in range(1, len(part)):
            qx = part[i].x;
            qy = part[i].y;
            if (qy >= threshold if top else qy <= threshold):
                # compute a linear interpolation
                #   threshold = s * (t - px) + py
                #   t = (threshold - py) / s + px
                return px + (threshold - py) * (qx - px) / (qy - py);
            px = qx;
            py = qy;

        return None; # no intersection

    ##############################################

    @staticmethod
    def _instersect_curve(
            curve1, curve2,
            t_min=0, t_max=1,
            u_min=0, u_max=1,
            old_delta_t=1,
            reverse=False, # flag to indicate that 1 <-> 2 when we store locations
            recursion=0, # number of recursions
            recursion_limit=32,
            t_limit=0.8,
            locations=[],
    ) :

        """Compute the intersection of two Bézier curves.

        Code inspired from

          *  https://github.com/paperjs/paper.js/blob/master/src/path/Curve.js
          *  http://nbviewer.jupyter.org/gist/hkrish/0a128f21a5b9e5a7a914 The Bezier Clipping Algorithm
          *  https://gist.github.com/hkrish/5ef0f2da7f9882341ee5 hkrish/bezclip_manual.py

        """

        # Note:
        #   see https://github.com/paperjs/paper.js/issues/565
        #   It was determined that more than 20 recursions are needed sometimes, depending on the
        #   delta_t threshold values further below when determining which curve converges the
        #   least. He also recommended a threshold of 0.5 instead of the initial 0.8

        if recursion > recursion_limit:
            return

        tolerance = 1e-5
        epsilon = 1e-10

        # t_min_new = 0.
        # t_max_new = 0.
        # delta_t = 0.

        # NOTE: the recursion threshold of 4 is needed to prevent this issue from occurring:
        #       https://github.com/paperjs/paper.js/issues/571
        #       when two curves share an end point
        if curve1.p0.x == curve1.p3.x and u_max - u_min <= epsilon and recursion > 4:
            # The fat-line of curve1 has converged to a point, the clipping is not reliable.
            # Return the value we have even though we will miss the precision.
            t_max_new = t_min_new = (t_max + t_min) / 2
            delta_t = 0
        else :
            # Compute the fat-line for curve1:
            #  a baseline and two offsets which completely encloses the curve
            fatline, d_min, d_max = curve1.fat_line()

            # Calculate a non-parametric bezier curve D(ti, di(t)) where di(t) is the distance of curve2 from
            # the baseline, ti is equally spaced in [0, 1]
            non_parametric_curve = curve2.non_parametric_curve(fatline)

            # Get the top and bottom parts of the convex-hull
            top, bottom = non_parametric_curve._clip_convex_hull()
            # Clip the convex-hull with d_min and d_max
            t_min_clip = self.clip_convex_hull(top, bottom, d_min, d_max);
            top.reverse()
            bottom.reverse()
            t_max_clip = clipConvexHull(top, bottom, d_min, d_max);

            # No intersections if one of the t values is None
            if t_min_clip is None or t_max_clip is None:
                return

            # Clip curve2 with the fat-line for curve1
            curve2 = curve2.split_at_two_t(t_min_clip, t_max_clip)
            delta_t = t_max_clip - t_min_clip
            # t_min and t_max are within the range [0, 1]
            # We need to project it to the original parameter range
            t_min_new = t_max * t_min_clip + t_min * (1 - t_min_clip)
            t_max_new = t_max * t_max_clip + t_min * (1 - t_max_clip)
            delta_t_new = t_max_new - t_min_new

        delta_u = u_max - u_min

        # Check if we need to subdivide the curves
        if old_delta_t > t_limit and delta_t > t_limit:
            # Subdivide the curve which has converged the least.
            args = (delta_t, not reverse, recursion+1, recursion_limit, t_limit, locations)
            if delta_u < delta_t_new: # curve2 < curve1
                parts = curve1.split_at_t(0.5)
                t = t_min_new + delta_t_new / 2
                self._intersect_curve(curve2, parts[0], u_min, u_max, t_min_new, t, *args)
                self._intersect_curve(curve2, parts[1], u_min, u_max, t, t_max_new, *args)
            else :
                parts = curve2.split_at_t(0.5)
                t = u_min + delta_u / 2
                self._intersect_curve(parts[0], curve1, u_min, t, t_min_new, t_max_new, *args)
                self._intersect_curve(parts[1], curve1, t, u_max, t_min_new, t_max_new, *args)

        elif max(delta_u, delta_t_new) < tolerance:
            # We have isolated the intersection with sufficient precision
            t1 = t_min_new + delta_t_new / 2
            t2 = u_min + delta_u / 2
            if reverse:
                t1, t2 = t2, t1
            p1 = curve1.point_at_t(t1)
            p2 = curve2.point_at_t(t2)
            locations.append([t1, point1, t2, point2])

        else:
            args = (delta_t, not reverse, recursion+1, recursion_limit, t_limit)
            self._intersect_curve(curve2, curve1, locations, u_min, u_max, t_min_new, t_max_new, *args)

    ##############################################

    def is_flat_enough(self, flatness):

         r"""Determines if a curve is sufficiently flat, meaning it appears as a straight line and has
         curve-time that is enough linear, as specified by the given *flatness* parameter.

         *flatness* is the maximum error allowed for the straight line to deviate from the curve.

         Algorithm

         We define the flatness of the curve as the argmax of the distance from the curve to the
         line passing by the start and stop point.

         :math:`\mathrm{flatness} = argmax(d(t))` for :math:`t \in [0, 1]` where :math:`d(t) = \vert B(t) - L(t) \vert`

         The line equation is

         .. math::
             L = (1-t) \mathbf{P}_0 + t \mathbf{P}_1

         Let

         .. math::
             \begin{align}
             u &= 3\mathbf{P}_1 - 2\mathbf{P}_0 - \mathbf{P}_3 \\
             v &= 3\mathbf{P}_2 - \mathbf{P}_0 - 2\mathbf{P}_3
             \end{align}

         The distance is

         .. math::
             \begin{align}
             d(t) &= (1-t)^2 t \left(3\mathbf{P}_1 - 2\mathbf{P}_0 - \mathbf{P}_3\right)  +  (1-t) t^2 (3\mathbf{P}_2 - \mathbf{P}_0 - 2\mathbf{P}_3) \\
                  &= (1-t)^2 t u  +  (1-t) t^2 v
             \end{align}

         The square of the distance is

         .. math::
             d(t)^2 = (1 - t)^2 t^2 (((1 - t) ux + t vx)^2 + ((1 - t) uy + t vy)^2

         From

         .. math::
             \begin{align}
             argmax((1 - t)^2 t^2)   &= \frac{1}{16} \\
             argmax((1 - t) a + t b) &= argmax(a, b)
             \end{align}

         we can express a bound on the flatness

         .. math::
             \mathrm{flatness}^2 = argmax(d(t)^2) \leq \frac{1}{16} (argmax(ux^2, vx^2) + argmax(uy^2, vy^2))

         Thus an upper bound of :math:`16\,\mathrm{flatness}^2` is

         .. math::
             argmax(ux^2, vx^2) + argmax(uy^2, vy^2)

Fabrice Salvaire's avatar
Fabrice Salvaire committed
         Reference
Fabrice Salvaire's avatar
Fabrice Salvaire committed
         * Kaspar Fischer and Roger Willcocks  http://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf
         * PostScript Language Reference. Addison- Wesley, third edition, 1999

         """

         # x0, y0 = list(self._p0)
         # x1, y1 = list(self._p1)
         # x2, y2 = list(self._p2)
         # x3, y3 = list(self._p3)

         # ux = 3*x1 - 2*x0 - x3
         # uy = 3*y1 - 2*y0 - y3
         # vx = 3*x2 - 2*x3 - x0
         # vy = 3*y2 - 2*y3 - y0

         u = 3*P1 - 2*P0 - P3
         v = 3*P2 - 2*P3 - P0

         return max(u.x**2, v.x**2) + max(u.y**2, v.y**2) <= 16 * flatness**2

    ##############################################

    @property
    def area(self):

        """Compute the area delimited by the curve and the segment across the start and stop point."""

        # Reference: http://objectmix.com/graphics/133553-area-closed-bezier-curve.html BUT DEAD LINK
        # Proof using divergence theorem ???
        # Fixme: any proof !

        x0, y0 = list(self._p0)
        x1, y1 = list(self._p1)
        x2, y2 = list(self._p2)
        x3, y3 = list(self._p3)