Newer
Older
<head>
<title>NuttX Users Manual</title>
<meta name="AUTHOR" content="Gregory Nutt">
</head>
<hr><hr>
<table width ="100%">
<tr align="center" bgcolor="#e4e4e4">
<td>
<h1><big><font color="#3c34ec"><i>NuttX Operating System<p>User's Manual</i></font></big></h1>
<p><small>by</small></p>
<p>Gregory Nutt<p>
patacongo
committed
<p>Last Updated: December 13, 2009</p>
</td>
</tr>
</table>
<hr><hr>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Introduction"><h1>1.0 Introduction</h1></a>
</td>
</tr>
</table>
<p>
This manual provides general usage information for the NuttX RTOS from the
perspective of the firmware developer.
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="overview"><h2>1.1 Document Overview</h2></a>
</td>
</tr>
</table>
<p>
This user's manual is divided into three sections plus a index:
</p>
<ul>
<li>
<b>Section 1.0, <a href="#Introduction">Introduction</a></b>:
This section provides an overview of the NuttX user's manual.
</li>
<li>
<b>Section 2.0, <a href="#OS_Interfaces">OS Interfaces</a></b>:
This section details the program interfaces provided by NuttX.
This section is divided into several paragraphs that describe different groups of OS interfaces:
<ul>
<li>Paragraph 2.1 <a href="#Task_Control">Task Control Interfaces</a></li>
<li>Paragraph 2.2 <a href="#Task_Schedule">Task Scheduling Interfaces</a></li>
<li>Paragraph 2.3 <a href="#Task_Switch">Task Switching Interfaces</a></li>
<li>Paragraph 2.4 <a href="#Message_Queue">Named Message Queue Interfaces</a></li>
<li>Paragraph 2.5 <a href="#Semaphores">Counting Semaphore Interfaces</a></li>
<li>Paragraph 2.6 <a href="#Watchdogs">Watchdog Timer Interfaces</a></li>
<li>Paragraph 2.7 <a href="#ClocksNTimers">Clocks and Timers</a></li>
<li>Paragraph 2.8 <a href="#Signals">Signal Interfaces</a></li>
<li>Paragraph 2.9 <a href="#Pthread">Pthread Interfaces</a></li>
<li>Paragraph 2.10 <a href="#Environ">Environment Variables</a></li>
<li>Paragraph 2.11 <a href="#FileSystem">File System Interfaces</a></li>
<li>Paragraph 2.12 <a href="#Network">Network Interfaces</a></li>
</ul>
</li>
<li>
<b>Section 3.0, <a href="#Data_Structures">OS Data Structures</a></b>:
This section documents the data structures that are used at the NuttX
interface.
<ul>
<li>Paragraph 3.1 <a href="#ScalarType">Scalar Types</a></li>
<li>Paragraph 3.2 <a href="#HiddenStructures">Hidden Interface Structures</a></li>
<li>Paragraph 3.3 <a href="#ErrnoAccess">Access to the <code>errno</code> Variable</a></li>
<li>Paragraph 3.4 <a href="#UserStructures">User Interface Structures</a></li>
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="scope"><h2>1.2 Intended Audience and Scope</h2></a>
</td>
</tr>
</table>
<p>
The intended audience for this document are firmware developers who are implementing applications on NuttX.
Specifically, this documented is limited to addressing only NuttX RTOS APIs that are available to the application developer.
As such, this document does not focus on any technical details of the organization or implementation of NuttX.
Those technical details are provided in the <a href="NuttxPortingGuide.html">NuttX Porting Guide</a>.
</p>
<p>
Information about configuring and building NuttX is also needed by the application developer.
That information can also be found in the <a href="NuttxPortingGuide.html#configandbuild">NuttX Porting Guide</a>.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="OS_Interfaces"><h1>2.0 OS Interfaces</h1></a>
</td>
</tr>
</table>
<p>
This section describes each C-callable interface to the NuttX
Operating System. The description of each interface is presented
in the following format:
<p>
<b>Function Prototype:</b> The C prototype of the interface function
<p>
<b>Description:</b> The operation performed by the interface function
<p>
<b>Input Parameters:</b> All input parameters are listed along
<p>
<b>Returned Values:</b> All possible values returned by the interface
function are listed. Values returned as side-effects (through
pointer input parameters or through global variables) will be
addressed in the description of the interface function.
<p>
<b>Assumptions/Limitations:</b> Any unusual assumptions made by
the interface function or any non-obvious limitations to the use
of the interface function will be indicated here.
<p>
<b>POSIX Compatibility:</b> Any significant differences between the
NuttX interface and its corresponding POSIX interface will be noted
NOTE: In order to achieve an independent name space for the NuttX
interface functions, differences in function names and types are
to be expected and will not be identified as differences in these
paragraphs.
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Task_Control"><h2>2.1 Task Control Interfaces</h2></a>
</td>
</tr>
</table>
NuttX is a flat address OS. As such it does not support <i>processes</i>
in the way that, say, Linux does.
NuttX only supports simple threads running within the same address space.
However, the programming model makes a distinction between <i>tasks</i>
and <i>pthreads</i>:
<li><i>tasks</i> are threads which have a degree of independence
<li><a href="#Pthread"><i>pthreads</i></a> share some resources.
<b>File Descriptors and Streams</b>.
This applies, in particular, in the area of opened file descriptors and streams.
When a task is started using the interfaces in this section, it will be created
with at most three open files.
</p>
</p>
If CONFIG_DEV_CONSOLE is defined, the first three file descriptors (corresponding
to stdin, stdout, stderr) will be duplicated for the new task.
Since these file descriptors are duplicated, the child task can free close
them or manipulate them in any way without effecting the parent task.
File-related operations (open, close, etc.) within a task will have no effect
on other tasks.
Since the three file descriptors are duplicated, it is also possible to perform
some level of redirection.
</p>
<p>
pthreads, on the other hand, will always share file descriptors with the parent
thread. In this case, file operations will have effect only all pthreads the
were started from the same parent thread.
</p>
<p><b>Executing Programs within a File System</b>.
NuttX also provides internal interfaces for the execution of separately built
programs that reside in a file system.
These internal interfaces are, however, non-standard and are documented
<a href="NuttXNxFlat.html#binfmt">elsewhere</a>.
<p><b>Task Control Interfaces</b>.
</p>
<ul>
<li><a href="#taskcreate">2.1.1 task_create</a></li>
<li><a href="#taskinit">2.1.2 task_init</a></li>
<li><a href="#taskactivate">2.1.3 task_activate</a></li>
<li><a href="#taskdelete">2.1.4 task_delete</a></li>
<li><a href="#exit">2.1.5 exit</a></li>
<li><a href="#taskrestart">2.1.6 task_restart</a></li>
int task_create(char *name, int priority, int stack_size, main_t entry, const char *argv[]);
This function creates and activates a new task with a
specified priority and returns its system-assigned ID.
</p>
function of the task.
This function will be called once the C environment has been set up.
The specified function will be called with four arguments.
Should the specified routine return, a call to exit() will automatically be made.
</P>
<p>
Note that an arbitrary number of arguments may be passed to the
spawned functions. The maximum umber of arguments is an OS
configuration parameter (<code>CONFIG_MAX_TASK_ARGS</code>).
</p>
<p>
The arguments are copied (via <code>strdup</code>) so that the
life of the passed strings is not dependent on the life of the
caller to <code>task_create()</code>.
</p>
<p>
The newly created task does not inherit scheduler characteristics
from the parent task: The new task is started at the
default system priority and with the SCHED_FIFO scheduling
<p>
The newly created task does inherit the first three file
descriptors (corresponding to stdin, stdout, and stderr) and
redirection of standard I/O is supported.
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>name</I>. Name of the new task</LI>
<li><I>priority</I>. Priority of the new task</LI>
<li><I>stack_size</I>. size (in bytes) of the stack needed</LI>
<li><I>entry</I>. Entry point of a new task</LI>
<li><I>argv</I>. A pointer to an array of input parameters. Up to
<code>CONFIG_MAX_TASK_ARG</code> parameters may be provided.
If fewer than <code>CONFIG_MAX_TASK_ARG</code> parameters are
passed, the list should be terminated with a NULL argv[] value.
If no parameters are required, argv may be NULL.
Returns the non-zero task ID of the new task or
ERROR if memory is insufficient or the task cannot be
created (<a href="#ErrnoAccess"><code>errno</code></a> is not set).
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
int taskSpawn(char *name, int priority, int options, int stackSize, FUNCPTR entryPt,
int arg1, int arg2, int arg3, int arg4, int arg5,
int arg6, int arg7, int arg8, int arg9, int arg10);
The NuttX task_create() differs from VxWorks' taskSpawn() in the
following ways:
</p>
<ul>
<li>Interface name
<li>Various differences in types of arguments
<li>A variable number of parameters can be passed to a task (VxWorks supports ten).
</ul>
patacongo
committed
int task_init(_TCB *tcb, char *name, int priority, uint32_t *stack, uint32_t stack_size,
patacongo
committed
maint_t entry, const char *argv[]);
in preparation for starting a new thread. It performs a subset
of the functionality of <code>task_create()</code> (see above).
Unlike task_create(), task_init() does not activate the task.
This must be done by calling task_activate().
</P>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>tcb</I>. Address of the new task's TCB
<li><I>name</I>. Name of the new task (not used)
<li><I>priority</I>. Priority of the new task
<li><I>stack</I>. Start of the pre-allocated stack
<li><I>stack_size</I>. size (in bytes) of the pre-allocated stack
<li><I>entry</I>. Entry point of a new task
<li><I>argv</I>. A pointer to an array of input parameters. Up to
<code>CONFIG_MAX_TASK_ARG</code> parameters may be provided.
If fewer than <code>CONFIG_MAX_TASK_ARG</code> parameters are
passed, the list should be terminated with a NULL argv[] value.
If no parameters are required, argv may be NULL.
<ul>
<li><p>OK, or ERROR if the task cannot be initialized.</P>
<p>This function can only failure is it is unable to assign
a new, unique task ID to the TCB (<a href="#ErrnoAccess"><code>errno</code></a> is not set).</P>
</ul>
<p>
<b>Assumptions/Limitations:</b>
<ul>
<li>task_init() is provided to support internal OS functionality. It is
<b>not recommended</b> for normal usage. task_create() is the preferred
</ul>
<p>
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
patacongo
committed
STATUS taskInit(WIND_TCB *pTcb, char *name, int priority, int options, uint32_t *pStackBase, int stackSize,
FUNCPTR entryPt, int arg1, int arg2, int arg3, int arg4, int arg5,
int arg6, int arg7, int arg8, int arg9, int arg10);
The NuttX task_init() differs from VxWorks' taskInit() in the
following ways:
</p>
<ul>
<li>Interface name
<li>Various differences in types or arguments
<li>There is no options argument.
<li>A variable number of parameters can be passed to a task (VxWorks supports ten).
</ul>
patacongo
committed
int task_activate( _TCB *tcb );
<p>
<b>Description:</b> This function activates tasks created by task_init().
Without activation, a task is ineligible for execution by the
scheduler.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>tcb</I>. The TCB for the task for the task (same as the
<li>OK, or ERROR if the task cannot be activated (<a href="#ErrnoAccess"><code>errno</code></a> is not set).
</ul>
<p>
<b>Assumptions/Limitations:</b>
<ul>
<li>task_activate() is provided to support internal OS functionality. It is
<b>not recommended</b> for normal usage. task_create() is the preferred
</ul>
<p>
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
The NuttX task_activate() differs from VxWorks' taskActivate() in the
following ways:
</p>
<ul>
<li>Function name
<li>With VxWork's taskActivate, the pid argument is supposed to be
patacongo
committed
int task_delete( pid_t pid );
<p>
<b>Description:</b> This function causes a specified task to cease
to exist -- its stack and TCB will be deallocated. This function
is the companion to task_create().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>pid</I>. The task ID of the task to delete. An ID of
<p>
<b>Returned Values:</b>
<ul>
<li>OK, or ERROR if the task cannot be deleted.
This function can fail if the provided pid does not correspond to a task (<a href="#ErrnoAccess"><code>errno</code></a> is not set)
task_delete() must be used with caution: If the task holds resources
(for example, allocated memory or semaphores needed by other tasks), then
task_delete() can strand those resources.
The NuttX task_delete() differs from VxWorks' taskDelete() in
the following ways:
</p>
<ul>
<li>No support is provided for calling the tasks deletion routines
#include <sched.h>
void exit( int code );
#include <nuttx/unistd.h>
void _exit( int code );
<p>
<b>Description:</b> This function causes the calling task to cease
to exist -- its stack and TCB will be deallocated. exit differs from
_exit in that it flushes streams, closes file descriptors and will
<p>
<b>Input Parameters:</b>
<ul>
<li><I>code</I>. (ignored)
</ul>
<p>
<b>POSIX Compatibility:</b> This is equivalent to the ANSI interface:
The NuttX exit() differs from ANSI exit() in the following ways:
</p>
patacongo
committed
int task_restart( pid_t pid );
<p>
<b>Description:</b> This function "restarts" a task.
The task is first terminated and then reinitialized with same
ID, priority, original entry point, stack size, and parameters
it had when it was first started.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>pid</I>. The task ID of the task to delete. An ID of
OK, or ERROR if the task ID is invalid or the task could
not be restarted.
This function can fail if:
(1) A pid of zero or the pid of the calling task is provided (functionality not implemented)
(2) The pid is not associated with any task known to the system.
</LI>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
The NuttX task_restart() differs from VxWorks' taskRestart() in the following ways:
</p>
<ul>
<li>Restart of the currently running task is not supported.
<li>The VxWorks description says that the ID, priority, etc. take
<p>
<b>Description:</b> This function returns the task ID of the
calling task. The task ID will be invalid if called at the interrupt
level.
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>The task ID of the calling task.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Task_Schedule"><h2>2.2 Task Scheduling Interfaces</h2></a>
</td>
</tr>
</table>
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
<p>
By default, NuttX performs strict priority scheduling: Tasks of higher
priority have exclusive access to the CPU until they become blocked.
At that time, the CPU is available to tasks of lower priority.
Tasks of equal priority are scheduled FIFO.
</p>
<p>
Optionally, a Nuttx task or thread can be configured with round-robin
scheduler. This is similar to priority scheduling <i>except</i> that
tasks with equal priority and share CPU time via <i>time-slicing</i>.
The time-slice interval is a constant determined by the configuration
setting <code>CONFIG_RR_INTERVAL</code>.
</p>
<p>
The OS interfaces described in the following paragraphs provide
a POSIX- compliant interface to the NuttX scheduler:
</p>
<ul>
<li><a href="#schedsetparam">2.2.1 sched_setparam</a></li>
<li><a href="#schedgetparam">2.2.2 sched_getparam</a></li>
<li><a href="#schedsetscheduler">2.2.3 sched_setscheduler</a></li>
<li><a href="#setgetscheduler">2.2.4 sched_getscheduler</a></li>
<li><a href="#sched_yield">2.2.5 sched_yield</a></li>
<li><a href="#schedgetprioritymax">2.2.6 sched_get_priority_max</a></li>
<li><a href="#schedgetprioritymin">2.2.7 sched_get_priority_min</a></li>
<li><a href="#schedgetrrinterval">2.2.8 sched_get_rr_interval</a></li>
</ul>
int sched_setparam(pid_t pid, const struct sched_param *param);
</pre>
<p>
This function sets the priority of the task specified by pid input parameter.
</p>
<p>
NOTE: Setting a task's priority to the same value has the similar
effect to <code>sched_yield()</code>: The task will be moved to after all
other tasks with the same priority.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>pid</code>.
The task ID of the task.
If <code>pid</code> is zero, the priority of the calling task is set.
</li>
<li>
<code>param</code>.
A structure whose member <code>sched_priority</code> is the integer priority.
The range of valid priority numbers is from <code>SCHED_PRIORITY_MIN</code> through <code>SCHED_PRIORITY_MAX</code>.
</li>
</ul>
<p>
<b>Returned Values:</b>
On success, sched_setparam() returns 0 (OK).
On error, -1 (ERROR) is returned, and <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately.
<li>
<code>EINVAL</code>.
The parameter <code>param</code> is invalid or does not make sense for the current scheduling policy.
</li>
<li>
<code>EPERM</code>.
The calling task does not have appropriate privileges.
</li>
<li>
<code>ESRCH</code>.
The task whose ID is <code>pid</code> could not be found.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
Comparable to the POSIX interface of the same name.
Differences from the full POSIX implementation include:
</p>
<ul>
<li>The range of priority values for the POSIX call is 0 to 255.</li>
</ul>
#include <sched.h>
int sched_getparam (pid_t pid, struct sched_param *param);
<p>
<b>Description:</b> This function gets the scheduling priority
<p>
<b>Input Parameters:</b>
<ul>
<li>
<code>pid</code>. The task ID of the task.
If pid is zero, the priority of the calling task is returned.
</li>
<li>
<code>param</code>.
A structure whose member <code>sched_priority</code> is the integer priority.
The task's priority is copied to the <code>sched_priority</code> element of this structure.
</li>
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) if successful, otherwise -1 (ERROR).
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="schedsetscheduler">2.2.3 sched_setscheduler</a></H3>
#include <sched.h>
int sched_setscheduler (pid_t pid, int policy, const struct sched_param *param);
<i>sched_setscheduler()</i> sets both the scheduling policy
and the priority for the task identified by pid.
If pid equals zero, the scheduler of the calling
thread will be set.
The parameter 'param' holds the priority of the thread under the new policy.
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li>
<I>pid</I>. The task ID of the task. If pid is zero, the
</li>
<li>
<I>policy</I>. Scheduling policy requested (either SCHED_FIFO or SCHED_RR).
</li>
<li>
<code>param<code>. A structure whose member sched_priority is the
integer priority. The range of valid priority numbers is from
SCHED_PRIORITY_MIN through SCHED_PRIORITY_MAX.
error, ERROR (-1) is returned, and <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately:
</p>
<ul>
<li>EINVAL The scheduling policy is not one of the
recognized policies.</li>
<li>ESRCH The task whose ID is pid could not be found.</li>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
pid equals zero, the policy of the calling process will
be retrieved.
*
* Inputs:
*
* Return Value:
This function returns the current scheduling
policy.
The task ID of the task to query.
If pid is zero, the calling task is queried.
</LI>
On success, <i>sched_getscheduler()</i> returns the policy for
the task (either SCHED_FIFO or SCHED_RR).
On error, ERROR (-1) is returned, and <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately:
<ul>
<li>ESRCH The task whose ID is pid could not be found.</li>
</ul>
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<li>Does not report errors via <a href="#ErrnoAccess"><code>errno</code></a>.
<p>
<b>Description:</b> This function forces the calling task to give
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR)
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="schedgetprioritymax">2.2.6 sched_get_priority_max</a></H3>
#include <sched.h>
int sched_get_priority_max (int policy)
<p>
<b>Description:</b> This function returns the value of the highest
<p>
<b>Input Parameters:</b>
<ul>
<li><I>policy</I>. Scheduling policy requested.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>The maximum priority value or -1 (ERROR).
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="schedgetprioritymin">2.2.7 sched_get_priority_min</a></H3>
#include <sched.h>
int sched_get_priority_min (int policy);
<p>
<b>Description:</b> This function returns the value of the lowest
<p>
<b>Input Parameters:</b>
<ul>
<li><I>policy</I>. Scheduling policy requested.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>The minimum priority value or -1 (ERROR)
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="schedgetrrinterval">2.2.8 sched_get_rr_interval</a></H3>
#include <sched.h>
int sched_get_rr_interval (pid_t pid, struct timespec *interval);
<i>sched_rr_get_interval()</i> writes the timeslice interval
for task identified by <i>pid</i> into the timespec structure
pointed to by <i>interval</i>. If pid is zero, the timeslice
for the calling process is written into 'interval. The
identified process should be running under the SCHED_RR
scheduling policy.'
</p>
<ul>
<li><I>pid</I>. The task ID of the task. If pid is zero, the
<li><I>interval</I>. A structure used to return the time slice.
</ul>
error, ERROR (-1) is returned, and <a href="#ErrnoAccess"><code>errno</code></a> is set to:
<ul>
<li>EFAULT Cannot copy to interval</LI>
<li>EINVAL Invalid pid.</LI>
<li>ENOSYS The system call is not yet implemented.</LI>
<li>ESRCH The process whose ID is pid could not be found.</LI>
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Task_Switch"><h2>2.3 Task Switching Interfaces</h2></a>
</td>
</tr>
</table>
<ul>
<li><a href="#schedlock">2.3.1 sched_lock</a></li>
<li><a href="#schedunlock">2.3.2 sched_unlock</a></li>
<li><a href="#schedlockcount">2.3.3 sched_lockcount</a></li>
</ul>
<H3><a name="schedlock">2.3.1 sched_lock</a></H3>
patacongo
committed
int sched_lock( void );
<p>
<b>Description:</b> This function disables context switching by
Disabling addition of new tasks to the ready-to-run task list.
The task that calls this function will be the only task that is
allowed to run until it either calls sched_unlock (the appropriate
number of times) or until it blocks itself.
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
patacongo
committed
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
patacongo
committed
int sched_unlock( void );
<p>
<b>Description:</b> This function decrements the preemption lock
count. Typically this is paired with sched_lock() and concludes
a critical section of code. Preemption will not be unlocked until
sched_unlock() has been called as many times as sched_lock().
When the lockCount is decremented to zero, any tasks that were
eligible to preempt the current task will execute.
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
patacongo
committed
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
patacongo
committed
int32_t sched_lockcount( void )
<p>
<b>Description:</b> This function returns the current value of
the lockCount. If zero, preemption is enabled; if non-zero, this
value indicates the number of times that sched_lock() has been called
on this thread of execution.
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>The current value of the lockCount.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> None.
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Message_Queue"><h2>2.4 Named Message Queue Interfaces</h2></a>
</td>
</tr>
</table>
NuttX supports POSIX named message queues for inter-task communication.
Any task may send or receive messages on named message queues.
Interrupt handlers may send messages via named message queues.
</p>
<ul>
<li><a href="#mqopen">2.4.1 mq_open</a></li>
<li><a href="#mqclose">2.4.2 mq_close</a></li>
<li><a href="#mqunlink">2.4.3 mq_unlink</a></li>
<li><a href="#mqsend">2.4.4 mq_send</a></li>
<li><a href="#mqtimedsend">2.4.5 mq_timedsend</a></li>
<li><a href="#mqreceive">2.4.6 mq_receive</a></li>
<li><a href="#mqtimedreceive">2.4.7 mq_timedreceive</a></li>
<li><a href="#mqnotify">2.4.8 mq_notify</a></li>
<li><a href="#mqsetattr">2.4.9 mq_setattr</a></li>
<li><a href="#mqgetattr">2.4.10 mq_getattr</a></li>
#include <mqueue.h>
mqd_t mq_open( const char *mqName, int oflags, ... );
<p>
<b>Description:</b> This function establish a connection between
a named message queue and the calling task. After a successful
call of mq_open(), the task can reference the message queue using
the address returned by the call. The message queue remains usable
until it is closed by a successful call to mq_close().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqName</I>. Name of the queue to open
<li><I>oflags</I>. Open flags. These may be any combination of:
<ul>
<li><I>O_RDONLY</I>. Open for read access.
<li><I>O_WRONLY</I>. Open for write access.
<li><I>O_RDWR</I>. Open for both read & write access.
<li><I>O_CREAT</I>. Create message queue if it does not already
<li><I>O_EXCL</I>. Name must not exist when opened.
<li><I>O_NONBLOCK</I>. Don't wait for data.
</ul>
When the O_CREAT flag is specified, POSIX requires that a third
and fourth parameter be supplied:
<ul>
<li><I>mode</I>. The mode parameter is of type mode_t. In the POSIX
specification, this mode value provides file permission bits for the
message queue. This parameter is required but not used in the present
implementation.
<li><I>attr</I>. A pointer to an mq_attr that is provided to initialize.
the message queue. If attr is NULL, then the messages queue is created
with implementation-defined default message queue attributes. If attr is
non-NULL, then the message queue mq_maxmsg attribute is set to the
corresponding value when the queue is created. The mq_maxmsg attribute
determines the maximum number of messages that can be queued before
addition attempts to send messages on the message queue fail or cause the
sender to block; the mq_msgsize attribute determines the maximum size of a
message that can be sent or received. Other elements of attr are ignored
(i.e, set to default message queue attributes).
</ul>
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>A message queue descriptor or -1 (ERROR)
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX interface
of the same name.
Differences from the full POSIX implementation include:
<ul>
<li>The mq_msgsize attributes determines the maximum size of a message that
may be sent or received. In the present implementation, this maximum
message size is limited at 22 bytes.
<p>
<b>Description:</b> This function is used to indicate that the
calling task is finished with the specified message queued mqdes.
The mq_close() deallocates any system resources allocated by the
system for use by this task for its message queue.
If the calling task has attached a notification request to the message
queue via this <I>mqdes</I> (see mq_notify()), this attachment will be
removed and the message queue is available for another task to attach
for notification.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqdes</I>. Message queue descriptor.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) if the message queue is closed successfully, otherwise,
<li>The behavior of a task that is blocked on either a <code>mq_send()</code> or
<code>mq_receive()</code> is undefined when <code>mq_close()</code> is called.
<li>The result of using this message queue descriptor after successful
</ul>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX interface
#include <mqueue.h>
int mq_unlink( const char *mqName );
<p>
<b>Description:</b> This function removes the message queue named
by "mqName." If one or more tasks have the message queue
open when mq_unlink() is called, removal of the message queue
is postponed until all references to the message queue have been
closed.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqName</I>. Name of the message queue
</ul>
<p>
<b>Returned Values:</b> None.
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
int mq_send(mqd_t mqdes, const void *msg, size_t msglen, int prio);
</pre>
<b>Description:</b>
This function adds the specified message, <code>msg</code>,
to the message queue, <code>mqdes</code>.
The <code>msglen</code> parameter specifies the length of the message in bytes pointed to by <code>msg</code>.
This length must not exceed the maximum message length from the <code>mq_getattr()</code>.
</p>
If the message queue is not full, <code>mq_send()</code> will place the <code>msg</code>
in the message queue at the position indicated by the <code>prio</code> argument.
Messages with higher priority will be inserted before lower priority messages
The value of <code>prio</code> must not exceed <code>MQ_PRIO_MAX</code>.
</p>
If the specified message queue is full and <code>O_NONBLOCK</code> is not
set in the message queue, then <code>mq_send()</code> will block until space
becomes available to the queue the message.
</p>
If the message queue is full and <code>NON_BLOCK</code> is set, the message
is not queued and <code>ERROR</code> is returned.
</p>
<b>Input Parameters:</b>
</p>
<li><code>mqdes</code>. Message queue descriptor.</li>
<li><code>msg</code>. Message to send.</li>
<li><code>msglen</code>. The length of the message in bytes.</li>
<li><code>prio</code>. The priority of the message.</li>
<b>Returned Values:</b>
On success, <code>mq_send()</code> returns 0 (<code>OK</code>);
on error, -1 (<code>ERROR</code>) is returned, with <a href="#ErrnoAccess"><code>errno</code></a> set
to indicate the error:
</p>
<li>
<code>EAGAIN</code>.
The queue was empty, and the <code>O_NONBLOCK</code> flag was set for the message queue description referred to by <code>mqdes</code>.
</li>
<li>
<code>EINVAL</code>.
Either <code>msg</code> or <code>mqdes</code> is <code>NULL</code> or the value of <code>prio</code> is invalid.
</li>
<li>
<code>EPERM</code>.
Message queue opened not opened for writing.
</li>
<li>
<code>EMSGSIZE</code>.
<code>msglen</code> was greater than the <code>maxmsgsize</code> attribute of the message queue.
</li>
<li>
<code>EINTR</code>.
The call was interrupted by a signal handler.
</li>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
<h3><a name="mqtimedsend">mq_timedsend</a></h3>
<b>Function Prototype:</b>
</p>
<pre>
#include <mqueue.h>
int mq_timedsend(mqd_t mqdes, const char *msg, size_t msglen, int prio,
const struct timespec *abstime);
</pre>
<p>
<b>Description:</b>
This function adds the specified message, <code>msg</code>,
to the message queue, <code>mqdes</code>.
The <code>msglen</code> parameter specifies the length of the message in bytes pointed to by <code>msg</code>.
This length must not exceed the maximum message length from the <code>mq_getattr()</code>.
</p>
<p>
If the message queue is not full, <code>mq_timedsend()</code> will place the <code>msg</code>
in the message queue at the position indicated by the <code>prio</code> argument.
Messages with higher priority will be inserted before lower priority messages
The value of <code>prio</code> must not exceed <code>MQ_PRIO_MAX</code>.
</p>
<p>
If the specified message queue is full and <code>O_NONBLOCK</code> is not
set in the message queue, then <code>mq_send()</code> will block until space
becomes available to the queue the message or until a timeout occurs.
</p>
<p>
<code>mq_timedsend()</code> behaves just like <code>mq_send()</code>, except
that if the queue is full and the <code>O_NONBLOCK</code> flag is not enabled
for the message queue description, then <code>abstime</code> points to a
structure which specifies a ceiling on the time for which the call will block.
This ceiling is an absolute timeout in seconds and nanoseconds since the
Epoch (midnight on the morning of 1 January 1970).
</p>
<p>
If the message queue is full, and the timeout has already expired by the time
of the call, <code>mq_timedsend()<code> returns immediately.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>mqdes</code>. Message queue descriptor.</li>
<li><code>msg</code>. Message to send.</li>
<li><code>msglen</code>. The length of the message in bytes.</li>
<li><code>prio</code>. The priority of the message.</li>
</ul>
<p>
<b>Returned Values:</b>
On success, <code>mq_send()</code> returns 0 (<code>OK</code>);
on error, -1 (<code>ERROR</code>) is returned, with <a href="#ErrnoAccess"><code>errno</code></a> set
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
to indicate the error:
</p>
<ul>
<li>
<code>EAGAIN</code>.
The queue was empty, and the <code>O_NONBLOCK</code> flag was set for the message queue description referred to by <code>mqdes</code>.
</li>
<li>
<code>EINVAL</code>.
Either <code>msg</code> or <code>mqdes</code> is <code>NULL</code> or the value of <code>prio</code> is invalid.
</li>
<li>
<code>EPERM</code>.
Message queue opened not opened for writing.
</li>
<li>
<code>EMSGSIZE</code>.
<code>msglen</code> was greater than the <code>maxmsgsize</code> attribute of the message queue.
</li>
<li>
<code>EINTR</code>.
The call was interrupted by a signal handler.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<h3><a name="mqreceive">2.4.5 mq_receive</a></h3>
<b>Function Prototype:</b>
</p>
<pre>
ssize_t mq_receive(mqd_t mqdes, void *msg, size_t msglen, int *prio);
<b>Description:</b>
This function receives the oldest of the highest priority messages from the message
queue specified by <code>mqdes</code>.
If the size of the buffer in bytes, <code>msgLen</code>, is less than the
<code>mq_msgsize</code> attribute of the message queue, <code>mq_receive()</code> will
return an error.
Otherwise, the selected message is removed from the queue and copied to <code>msg</code>.
</p>
If the message queue is empty and <code>O_NONBLOCK</code> was not set, <code>mq_receive()</code>
will block until a message is added to the message queue.
If more than one task is waiting to receive a message, only the task with the highest
priority that has waited the longest will be unblocked.
</p>
If the queue is empty and <code>O_NONBLOCK</code> is set, <code>ERROR</code> will be returned.
</p>
<b>Input Parameters:</b>
</p>
<li><code>mqdes</code>. Message Queue Descriptor.</li>
<li><code>msg</code>. Buffer to receive the message.</li>
<li><code>msglen</code>. Size of the buffer in bytes.</li>
<li><code>prio</code>. If not NULL, the location to store message priority.
<b>Returned Values:</b>.
One success, the length of the selected message in bytes is returned.
On failure, -1 (<code>ERROR</code>) is returned and the <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately:
<li>
<code>EAGAIN</code>
The queue was empty and the <code>O_NONBLOCK</code> flag was set for the message queue description referred to by <code>mqdes</code>.
</li>
<li>
<code>EPERM</code>
Message queue opened not opened for reading.
</li>
<li>
<code>EMSGSIZE</code>
<code>msglen</code> was less than the <code>maxmsgsize</code> attribute of the message queue.
</li>
<li>
<code>EINTR</code>
The call was interrupted by a signal handler.
</li>
<li>
<code>EINVAL</code>
Invalid <code>msg</code> or <code>mqdes</code>
</li>
<b>Assumptions/Limitations:</b>
</p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
<h3><a name="mqtimedreceive">2.4.6 mq_timedreceive</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <mqueue.h>
ssize_t mq_timedreceive(mqd_t mqdes, void *msg, size_t msglen,
int *prio, const struct timespec *abstime);
</pre>
<p>
<b>Description:</b>
This function receives the oldest of the highest priority messages from the message
queue specified by <code>mqdes</code>.
If the size of the buffer in bytes, <code>msgLen</code>, is less than the
<code>mq_msgsize</code> attribute of the message queue, <code>mq_timedreceive()</code> will
return an error.
Otherwise, the selected message is removed from the queue and copied to <code>msg</code>.
</p>
<p>
If the message queue is empty and <code>O_NONBLOCK</code> was not set, <code>mq_timedreceive()</code>
will block until a message is added to the message queue (or until a timeout occurs).
If more than one task is waiting to receive a message, only the task with the highest
priority that has waited the longest will be unblocked.
</p>
<p>
<code>mq_timedreceive()</code> behaves just like <code>mq_receive()<code>, except
that if the queue is empty and the <code>O_NONBLOCK<c/ode> flag is not enabled
for the message queue description, then <code>abstime</code> points to a structure
which specifies a ceiling on the time for which the call will block.
This ceiling is an absolute timeout in seconds and nanoseconds since the Epoch
(midnight on the morning of 1 January 1970).
</p>
<p>
If no message is available, and the timeout has already expired by the time of
the call, <code>mq_timedreceive()</code> returns immediately.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>mqdes</code>. Message Queue Descriptor.</li>
<li><code>msg</code>. Buffer to receive the message.</li>
<li><code>msglen</code>. Size of the buffer in bytes.</li>
<li><code>prio</code>. If not NULL, the location to store message priority.
<li><code>abstime</code>. The absolute time to wait until a timeout is declared.
</ul>
<p>
<b>Returned Values:</b>.
One success, the length of the selected message in bytes is returned.
On failure, -1 (<code>ERROR</code>) is returned and the <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately:
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
</p>
<ul>
<li>
<code>EAGAIN</code>:
The queue was empty and the <code>O_NONBLOCK</code> flag was set for the message queue description referred to by <code>mqdes</code>.
</li>
<li>
<code>EPERM</code>:
Message queue opened not opened for reading.
</li>
<li>
<code>EMSGSIZE</code>:
<code>msglen</code> was less than the <code>maxmsgsize</code> attribute of the message queue.
</li>
<li>
<code>EINTR</code>:
The call was interrupted by a signal handler.
</li>
<li>
<code>EINVAL</code>:
Invalid <code>msg</code> or <code>mqdes</code> or <code>abstime</code>
</li>
<li>
<code>ETIMEDOUT</code>:
The call timed out before a message could be transferred.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<h3><a name="mqnotify">2.4.7 mq_notify</a></h3>
int mq_notify(mqd_t mqdes, const struct sigevent *notification);
</pre>
<p>
<b>Description:</b> If the "notification" input parameter
is not NULL, this function connects the task with the message queue such
that the specified signal will be sent to the task whenever the message
changes from empty to non-empty. One notification can be attached
to a message queue.
If "notification" is NULL, the attached notification
is detached (if it was held by the calling task) and the queue
is available to attach another notification.
When the notification is sent to the registered task, its registration
will be removed. The message queue will then be available for
registration.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqdes</I>. Message queue descriptor
<li><I>notification</I>. Real-time signal structure containing:
<ul>
<li><I>sigev_notify</I>. Should be SIGEV_SIGNAL (but actually
<li><I>sigev_signo</I>. The signo to use for the notification
<li><I>sigev_value</I>. Value associated with the signal
</ul>
</ul>
<p>
<b>Returned Values:</b> None.
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX interface
of the same name.
Differences from the full POSIX implementation include:
<ul>
<li>The notification signal will be sent to the registered task even if
another task is waiting for the message queue to become non-empty. This is
inconsistent with the POSIX specification which states, "If a process
has registered for notification of message arrival at a message queue and
some process is blocked in <I>mq_receive</I> waiting to receive a message
when a message arrives at the queue, the arriving message shall satisfy the
appropriate <I>mq_receive()</I> ... The resulting behavior is as if the
message queue remains empty, and no notification shall be sent."
<H3><a name="mqsetattr">2.4.8 mq_setattr</a></H3>
#include <mqueue.h>
int mq_setattr( mqd_t mqdes, const struct mq_attr *mqStat,
struct mq_attr *oldMqStat);
<p>
<b>Description:</b> This function sets the attributes associated
with the specified message queue "mqdes." Only the "O_NONBLOCK"
bit of the "mq_flags" can be changed.
If "oldMqStat" is non-null, mq_setattr() will store
the previous message queue attributes at that location (just as
would have been returned by mq_getattr()).
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqdes</I>. Message queue descriptor
<li><I>mqStat</I>. New attributes
<li><I>oldMqState</I>. Old attributes
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) if attributes are set successfully, otherwise -1
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="mqgetattr">2.4.9 mq_getattr</a></H3>
#include <mqueue.h>
int mq_getattr( mqd_t mqdes, struct mq_attr *mqStat);
<p>
<b>Description:</b> This functions gets status information and
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqdes</I>. Message queue descriptor
<li><I>mqStat</I>. Buffer in which to return attributes. The returned
<ul>
<li><I>mq_maxmsg</I>. Max number of messages in queue.
<li><I>mq_msgsize</I>. Max message size.
<li><I>mq_flags</I>. Queue flags.
<li><I>mq_curmsgs</I>. Number of messages currently in queue.
</ul>
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) if attributes provided, -1 (ERROR) otherwise.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Semaphores"><h2>2.5 Counting Semaphore Interfaces</h2></a>
</td>
</tr>
</table>
<p>
<b>Semaphores</b>. Semaphores are the basis for
synchronization and mutual exclusion in NuttX. NuttX supports
POSIX semaphores.
</p>
<p>
Semaphores are the preferred mechanism for gaining exclusive access to a
resource. sched_lock() and sched_unlock() can also be used for this purpose.
However, sched_lock() and sched_unlock() have other undesirable side-affects
in the operation of the system: sched_lock() also prevents higher-priority
tasks from running that do not depend upon the semaphore-managed resource
and, as a result, can adversely affect system response times.
</p>
<p>
<a name="priorityinversion"><b>Priority Inversion</b></a>.
Proper use of semaphores avoids the issues of <code>sched_lock()</code>.
However, consider the following example:
<li>Some low-priority task, <I>Task C</I>, acquires a semaphore in order to
<li><I>Task C</I> is suspended to allow some high-priority task,</li>
<li><I>Task A</I> attempts to acquire the semaphore held by <I>Task C</I> and
gets blocked until <I>Task C</I> relinquishes the semaphore.</li>
<li><I>Task C</I> is allowed to execute again, but gets suspended by some
medium-priority <I>Task B</I>.</li>
</OL>
<p>
At this point, the high-priority <I>Task A</I> cannot execute until
<I>Task B</I> (and possibly other medium-priority tasks) completes and until
<I>Task C</I> relinquishes the semaphore. In effect, the high-priority task,
<I>Task A</I> behaves as though it were lower in priority than the
low-priority task, <I>Task C</I>! This phenomenon is called <I>priority
inversion</I>.
</p>
<p>
Some operating systems avoid priority inversion by <I>automatically</I>
increasing the priority of the low-priority <I>Task C</I> (the operable
buzz-word for this behavior is <I>priority inheritance</I>). NuttX
supports this behavior, but only if <code>CONFIG_PRIORITY_INHERITANCE</code>
is defined in your OS configuration file. If <code>CONFIG_PRIORITY_INHERITANCE</code>
is not defined, then it is left to the designer to provide implementations
that will not suffer from priority inversion.
<li>Implement all tasks that need the semaphore-managed resources at the
<li>Boost the priority of the low-priority task before the semaphore is
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
<p>
<a name="priorityinheritance"><b>Priority Inheritance</b></a>.
As mentioned, NuttX does support <i>priority inheritance</i> provided that
<code>CONFIG_PRIORITY_INHERITANCE</code> is defined in your OS configuration file.
However, the implementation and configuration of the priority inheritance feature
is sufficiently complex that more needs to be said.
How can a feature that can be described by a single, simple sentence require such
a complex implementation:
</p>
<ul>
<li>
<b><code>CONFIG_SEM_PREALLOCHOLDERS</code>.</b>
First of all, in NuttX priority inheritance is implement on POSIX counting
semaphores. The reason for this is that these semaphores are the most
primitive waiting mechanism in NuttX; Most other waiting facilities are
based on semaphores. So if priority inheritance is implemented for POSIX
counting semaphores, then most NuttX waiting mechanisms will have this
capability.
<p>
Complexity arises because counting semaphores can have numerous
holders of semaphore counts. Therefore, in order to implement
priority inheritance across all holders, then internal data
structures must be allocated to manage the various holders associated
with a semaphore.
The setting <code>CONFIG_SEM_PREALLOCHOLDERS</code> defines the maximum
number of different threads (minus one per semaphore instance) that can
take counts on a semaphore with priority inheritance support.
This setting defines the size of a single pool of pre-allocated structures.
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
It may be set to zero if priority inheritance is disabled OR if you
are only using semaphores as mutexes (only one holder) OR if no more
than two threads participate using a counting semaphore.
</p>
<p>
The cost associated with setting <code>CONFIG_SEM_PREALLOCHOLDERS</code>
is slightly increased code size and around 6-12 bytes times the value
of <code>CONFIG_SEM_PREALLOCHOLDERS</code>.
</p>
</li>
<li>
<b><code>CONFIG_SEM_NNESTPRIO</code>:</b>
In addition, there may be multiple threads of various priorities that
need to wait for a count from the semaphore.
These, the lower priority thread holding the semaphore may have to
be boosted numerous time and, to make things more complex, will have
to keep track of all of the boost priorities values in in order to
correctly restore the priorities after a count has been handed out
to the higher priority thread.
The <code>CONFIG_SEM_NNESTPRIO</code> defines the size of an array,
one array per active thread.
This setting is the maximum number of higher priority threads (minus
1) than can be waiting for another thread to release a count on a semaphore.
This value may be set to zero if no more than one thread is expected to
wait for a semaphore.
<p>
The cost associated with setting <code>CONFIG_SEM_NNESTPRIO</code>
is slightly increased code size and (<code>CONFIG_SEM_PREALLOCHOLDERS</code> + 1)
times the maximum number of active threads.
</p>
</li>
<li>
<b>Increased Susceptibility to Bad Thread Behavior</b>.
These various structures tie the semaphore implementation more tightly to
the behavior of the implementation. For examples, if a thread executes while
holding counts on a semaphore, or if a thread exits without call <code>sem_destroy()</code>
then. Or what if the thread with the boosted priority re-prioritizes itself?
The NuttX implement of priority inheritance attempts to handle all of these
types of corner cases, but it is very likely that some are missed.
The worst case result is that memory could by stranded within the priority
inheritance logic.
</li>
</ul>
<p>
POSIX semaphore interfaces:
</p>
<ul>
<li><a href="#seminit">2.5.1 sem_init</a></li>
<li><a href="#semdestroy">2.5.2 sem_destroy</a></li>
<li><a href="#semopen">2.5.3 sem_open</a></li>
<li><a href="#semclose">2.5.4 sem_close</a></li>
<li><a href="#semunlink">2.5.5 sem_unlink</a></li>
<li><a href="#semwait">2.5.6 sem_wait</a></li>
<li><a href="#semtrywait">2.5.7 sem_trywait</a></li>
<li><a href="#sempost">2.5.8 sem_post</a></li>
<li><a href="#semgetvalue">2.5.9 sem_getvalue</a></li>
</ul>
<H3><a name="seminit">2.5.1 sem_init</a></H3>
#include <semaphore.h>
int sem_init ( sem_t *sem, int pshared, unsigned int value );
<p>
<b>Description:</b> This function initializes the UN-NAMED semaphore
sem. Following a successful call to sem_init(), the semaphore
may be used in subsequent calls to sem_wait(), sem_post(), and
sem_trywait(). The semaphore remains usable until it is destroyed.
Only <I>sem</I> itself may be used for performing synchronization. The
result of referring to copies of <I>sem</I> in calls to <I>sem_wait()</I>,
<I>sem_trywait()</I>, <I>sem_post()</I>, and <I>sem_destroy()</I>, is
not defined.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore to be initialized
<li><I>pshared</I>. Process sharing (not used)
<li><I>value</I>. Semaphore initialization value
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
#include <semaphore.h>
int sem_destroy ( sem_t *sem );
<p>
<b>Description:</b> This function is used to destroy the un-named semaphore
indicated by <I>sem</I>. Only a semaphore that was created using
<I>sem_init()</I> may be destroyed using <I>sem_destroy()</I>. The effect
of calling <I>sem_destroy()</I> with a named semaphore is undefined. The
effect of subsequent use of the semaphore <I>sem</I> is undefined until
<I>sem</I> is re-initialized by another call to <I>sem_init()</I>.
The effect of destroying a semaphore upon which other tasks are currently
blocked is undefined.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore to be destroyed.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
#include <semaphore.h>
sem_t *sem_open ( const char *name, int oflag, ...);
<p>
<b>Description:</b> This function establishes a connection between
named semaphores and a task. Following a call to sem_open() with
the semaphore name, the task may reference the semaphore associated
with name using the address returned by this call. The semaphore
may be used in subsequent calls to sem_wait(), sem_trywait(),
and sem_post(). The semaphore remains usable until the semaphore
is closed by a successful call to sem_close().
If a task makes multiple calls to sem_open() with the same name,
then the same semaphore address is returned (provided there have
been no calls to sem_unlink()).
<p>
<b>Input Parameters:</b>
<ul>
<li><I>name</I>. Semaphore name
<li><I>oflag</I>. Semaphore creation options. This may one of
<ul>
<li><I>oflag</I> = 0: Connect to the semaphore only if it already
NOTE: When the O_CREAT flag is specified, POSIX requires that a third
and fourth parameter be supplied:
This parameter is required but not used in the present
implementation.
<li><I>value</I>. The value parameter is type unsigned int. The semaphore
is created with an initial value of <I>value</I>. Valid initial values for
semaphores must be less than or equal to <I>SEM_VALUE_MAX</I> (defined in
<CODE>include/limits.h</CODE>).
</ul>
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>A pointer to sem_t or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<ul>
<li>Treatment of links/connections is highly simplified. It is
<p>
<b>Description:</b> This function is called to indicate that the
calling task is finished with the specified named semaphore, sem.
The sem_close() deallocates any system resources allocated by
the system for this named semaphore.
If the semaphore has not been removed with a call to sem_unlink(),
then sem_close() has no effect on the named semaphore. However,
when the named semaphore has been fully unlinked, the semaphore
will vanish when the last task closes it.
Care must be taken to avoid risking the deletion of a semaphore
that another calling task has already locked.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<ul>
<li>Care must be taken to avoid deletion of a semaphore that another task
<li>sem_close() must not be called with an un-named semaphore.
</ul>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
#include <semaphore.h>
int sem_unlink ( const char *name );
<p>
<b>Description:</b> This function will remove the semaphore named by the
input name parameter. If one or more tasks have the semaphore named by
name open when sem_unlink() is called, destruction of the semaphore will
be postponed until all references have been destroyed by calls to
sem_close().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>name</I>. Semaphore name
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<ul>
<li>Care must be taken to avoid deletion of a semaphore that another task
<li>sem_unlink() must not be called with an un-named semaphore.
</ul>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<ul>
<li>Treatment of links/connections is highly simplified. It is
<li>Calls to sem_open() to re-create or re-connect to the semaphore may
refer to the same semaphore; POSIX specifies that a new semaphore with the
same name should be created after sem_unlink() is called.
<p>
<b>Description:</b> This function attempts to lock the semaphore
referenced by sem. If the semaphore as already locked by another
task, the calling task will not return until it either successfully acquires
the lock or the call is interrupted by a signal.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) is unsuccessful
</ul>
<p>
If <I>sem_wait</I> returns -1 (ERROR) then the cause of the failure
will be indicated by the thread-specific <a href="#ErrnoAccess"><code>errno</code></a>.
The following lists the possible values for <a href="#ErrnoAccess"><code>errno</code></a>:
<p>
<ul>
<li><I>EINVAL</I>: Indicates that the <I>sem</I> input parameter is
<li><I>EINTR</I>: Indicates that the wait was interrupt by a signal
received by this task. In this case, the semaphore has not be acquired.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
#include <semaphore.h>
int sem_trywait ( sem_t *sem );
<p>
<b>Description:</b> This function locks the specified semaphore
only if the semaphore is currently not locked. In any event, the call
returns without blocking.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. The semaphore descriptor
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR) if unsuccessful
</ul>
If <I>sem_wait</I> returns -1 (ERROR) then the cause of the failure
will be indicated by the thread-specific <a href="#ErrnoAccess"><code>errno</code></a>.
The following lists the possible values for <a href="#ErrnoAccess"><code>errno</code></a>:
<p>
<ul>
<li><I>EINVAL</I>: Indicates that the <I>sem</I> input parameter is
<li><I>EAGAIN</I>: Indicates that the semaphore was not acquired.
</ul>
<p>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<p>
<b>Description:</b> When a task has finished with a semaphore,
it will call sem_post(). This function unlocks the semaphore referenced
by <I>sem</I> by performing the semaphore unlock operation.
If the semaphore value resulting from this operation is positive, then
no tasks were blocked waiting for the semaphore to become unlocked;
The semaphore value is simply incremented.
If the value of the semaphore resulting from this operation is zero, then
on of the tasks blocked waiting for the semaphore will be allowed to
return successfully from its call to <I>sem_wait()</I>.
<p>
<b>NOTE</b>: <I>sem_post()</I> may be called from an interrupt handler.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b> This function cannot be called
from an interrupt handler. It assumes the currently executing
task is the one that is performing the unlock.
#include <semaphore.h>
int sem_getvalue ( sem_t *sem, int *sval );
by sval argument to have the value of the semaphore referenced
by sem without effecting the state of the semaphore. The updated
value represents the actual semaphore value that occurred at some
unspecified time during the call, but may not reflect the actual
value of the semaphore when it is returned to the calling task.
If sem is locked, the value return by sem_getvalue() will either
be zero or a negative number whose absolute value represents the
number of tasks waiting for the semaphore.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor
<li><I>sval</I>. Buffer by which the value is returned
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Watchdogs"><h2>2.6 Watchdog Timer Interfaces</h2></a>
</td>
</tr>
</table>
NuttX provides a general watchdog timer facility.
This facility allows the NuttX user to specify a watchdog timer function
that will run after a specified delay.
The watchdog timer function will run in the context of the timer interrupt handler.
Because of this, a limited number of NuttX interfaces are available to he watchdog timer function.
However, the watchdog timer function may use <code>mq_send()</code>, <code>sigqueue()</code>,
or <code>kill()</code> to communicate with NuttX tasks.
</p>
<ul>
<li><a href="#wdcreate">2.6.1 wd_create</a></li>
<li><a href="#wddelete">2.6.2 wd_delete</a></li>
<li><a href="#wdstart">2.6.3 wd_start</a></li>
<li><a href="#wdcancel">2.6.4 wd_cancel</a></li>
<li><a href="#wdgettime">2.6.5 wd_gettime</a></li>
<p>
<b>Description:</b> The wd_create function will create a watchdog
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>Pointer to watchdog that may be used as a handle in subsequent
NuttX calls (i.e., the watchdog ID), or NULL if insufficient resources
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
<ul>
<li>The number of available watchdogs is fixed (configured at
patacongo
committed
int wd_delete (WDOG_ID wdog);
<p>
<b>Description:</b> The wd_delete function will deallocate a
watchdog. The watchdog will be removed from the timer queue if
has been started.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. The watchdog ID to delete. This is actually a
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b> It is the responsibility of the
caller to assure that the watchdog is inactive before deleting
it.
patacongo
committed
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
<ul>
<li>Does not make any checks to see if the watchdog is being used
patacongo
committed
int wd_start( WDOG_ID wdog, int delay, wdentry_t wdentry,
<p>
<b>Description:</b> This function adds a watchdog to the timer
queue. The specified watchdog function will be called from the
interrupt level after the specified number of ticks has elapsed.
Watchdog timers may be started from the interrupt level.
Watchdog times execute in the context of the timer interrupt handler.
To replace either the timeout delay or the function to be executed,
call wd_start again with the same wdog; only the most recent
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. Watchdog ID
<li><I>delay</I>. Delay count in clock ticks
<li><I>wdentry</I>. Function to call on timeout
patacongo
committed
<li><I>argc</I>. The number of uint32_t parameters to pass to wdentry.
<li><I>...</I>. uint32_t size parameters to pass to wdentry
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b> The watchdog routine runs in the
context of the timer interrupt handler and is subject to all ISR
restrictions.
patacongo
committed
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
STATUS wdStart (WDOG_ID wdog, int delay, FUNCPTR wdentry, int parameter);
<ul>
<li>The present implementation supports multiple parameters passed
to wdentry; VxWorks supports only a single parameter. The maximum
number of parameters is determined by
patacongo
committed
int wd_cancel (WDOG_ID wdog);
<p>
<b>Description:</b> This function cancels a currently running
watchdog timer. Watchdog timers may be canceled from the interrupt
level.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. ID of the watchdog to cancel.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
patacongo
committed
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
<h3><a name="wdgettime">2.6.5 wd_gettime</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <wdog.h>
Sint wd_gettime(WDOG_ID wdog);
</pre>
<p>
<b>Description:</b>
This function returns the time remaining before the specified watchdog expires.
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><code>wdog</code>. Identifies the watchdog that the request is for.</li>
</ul>
</p>
<p>
<b>Returned Value:</b>
The time in system ticks remaining until the watchdog time expires. Zero
means either that wdog is not valid or that the wdog has already expired.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="ClocksNTimers"><h2>2.7 Clocks and Timers</h2></a>
</td>
</tr>
</table>
<ul>
<li><a href="#clocksettime">2.7.1 clock_settime</a></li>
<li><a href="#clockgettime">2.7.2 clock_gettime</a></li>
<li><a href="#clockgetres">2.7.3 clock_getres</a></li>
<li><a href="#mktime">2.7.4 mktime</a></li>
<li><a href="#gmtime">2.7.5 gmtime</a></li>
<li><a href="#localtime">2.7.6 localtime</a></li>
<li><a href="#gmtimer">2.7.7 gmtime_r</a></li>
<li><a href="#localtimer">2.7.8 localtime_r</a></li>
<li><a href="#timercreate">2.7.9 timer_create</a></li>
<li><a href="#timerdelete">2.7.10 timer_delete</a></li>
<li><a href="#timersettime">2.7.11 timer_settime</a></li>
<li><a href="#timergettime">2.7.12 timer_gettime</a></li>
<li><a href="#timergetoverrun">2.7.13 timer_getoverrun</a></li>
<li><a href="#gettimeofday">2.7.14 gettimeofday</a></li>
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_settime(clockid_t clockid, const struct timespec *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_settime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_gettime(clockid_t clockid, struct timespec *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_gettime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_getres(clockid_t clockid, struct timespec *res);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_getres()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
time_t mktime(struct tm *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>mktime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
<H3><a name="gmtime">2.7.5 gmtime</a></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
struct tm *gmtime(const time_t *clock);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>clock</code>.
Represents calendar time.
This is an absolute time value representing the number of seconds elapsed since 00:00:00
on January 1, 1970, Coordinated Universal Time (UTC).
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>gmtime()</I> function will return the pointer to a statically
defined instance of <code>struct tim</code>.
Otherwise, a NULL will be returned to indicate the error:
</p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<H3><a name="localtime">2.7.6 localtime</a></H3>
<pre>
#include <time.h>
#define localtime(c) gmtime(c)
</pre>
<H3><a name="gmtimer">2.7.7 gmtime_r</a></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
struct tm *gmtime_r(const time_t *clock, struct tm *result);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>clock</code>.
Represents calendar time.
This is an absolute time value representing the number of seconds elapsed since 00:00:00
on January 1, 1970, Coordinated Universal Time (UTC).
<li><code>result</code>.
A user-provided buffer to receive the converted time structure.
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>gmtime_r()</I> function will return the pointer, <code>result</code>,
provided by the caller.
Otherwise, a NULL will be returned to indicate the error:
<H3><a name="localtimer">2.7.8 localtime_r</a></H3>
<pre>
#include <time.h>
#define localtime_r(c,r) gmtime_r(c,r)
</pre>
<H3><a name="timercreate">2.7.9 timer_create</a></H3>
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);
</pre>
<p>
<b>Description:</b>
The <code>timer_create()</code> function creates per-thread timer using the specified
clock, <code>clock_id</code>, as the timing base.
The <code>timer_create()</code> function returns, in
the location referenced by <code>timerid</code>, a timer ID of type timer_t used to identify
the timer in timer requests.
This timer ID is unique until the timer is deleted.
The particular clock, <code>clock_id<code>, is defined in <code><time.h><code>.
The timer whose ID is returned will be in a disarmed state upon return from
<code>timer_create()</code>.
</p>
<p>
The <code>evp</code> argument, if non-NULL, points to a <code>sigevent</code> structure.
This structure is allocated by the called and defines the asynchronous notification to occur.
If the <code>evp</code> argument is NULL, the effect is as if the <code>evp</code> argument pointed to
a <code>sigevent</code> structure with the <code>sigev_notify</code> member having the value <code>SIGEV_SIGNAL</code>,
the <code>sigev_signo</code> having a default signal number, and the <code>sigev_value</code> member
having the value of the timer ID.
</p>
<p>
Each implementation defines a set of clocks that can be used as timing bases
for per-thread timers. All implementations shall support a <code>clock_id</code> of
<code>CLOCK_REALTIME</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>clockid</code>. Specifies the clock to use as the timing base.
Must be <code>CLOCK_REALTIME</code>.</li>
<li><code>evp</code>. Refers to a user allocated sigevent structure that defines the
asynchronous notification. evp may be NULL (see above).</li>
<li><code>timerid</code>. The pre-thread timer created by the call to timer_create().</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If the call succeeds, <code>timer_create()</code> will return 0 (<code>OK</code>) and update the
location referenced by <code>timerid</code> to a <code>timer_t</code>, which can be passed to the
other per-thread timer calls. If an error occurs, the function will return
a value of -1 (<code>ERROR</code>) and set <a href="#ErrnoAccess"><code>errno</code></a> to indicate the error.
</p>
<ul>
<li><code>EAGAIN</code>. The system lacks sufficient signal queuing resources to honor the
request.</li>
<li><code>EAGAIN</code>. The calling process has already created all of the timers it is
allowed by this implementation.</li>
<li><code>EINVAL</code>. The specified clock ID is not defined.</li>
<li><code>ENOTSUP</code>. The implementation does not support the creation of a timer attached
to the CPU-time clock that is specified by clock_id and associated with a
thread different thread invoking timer_create().</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>Only <code>CLOCK_REALTIME</code> is supported for the <code>clockid</code> argument.</li>
</ul>
<H3><a name="timerdelete">2.7.10 timer_delete</a></H3>
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_delete(timer_t timerid);
</pre>
<p>
<b>Description:</b>
The <code>timer_delete()</code> function deletes the specified timer, <code>timerid</code>, previously
created by the <code>timer_create()</code> function.
If the timer is armed when <code>timer_delete()</code> is called, the timer will be automatically disarmed before
removal.
The disposition of pending signals for the deleted timer is unspecified.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>.
The pre-thread timer, previously created by the call to timer_create(), to be deleted.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>timer_delete()</I> function will return zero (<I>OK</I>).
Otherwise, the function will return a value of -1 (ERROR) and set
<a href="#ErrnoAccess"><code>errno</code></a> to indicate the error:
</p>
<ul>
<li><code>EINVAL</code>. The timer specified timerid is not valid.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<H3><a name="timersettime">2.7.11 timer_settime</a></H3>
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
struct itimerspec *ovalue);
</pre>
<p>
<b>Description:</b>
The <code>timer_settime()</code> function sets the time until the next expiration of the
timer specified by <code>timerid</code> from the <code>it_value</code> member of the value argument
and arm the timer if the <code>it_value</code> member of value is non-zero. If the
specified timer was already armed when <code>timer_settime()</code> is called, this call
will reset the time until next expiration to the value specified. If the
<code>it_value</code> member of value is zero, the timer will be disarmed. The effect
of disarming or resetting a timer with pending expiration notifications is
unspecified.
</p>
<p>
If the flag <code>TIMER_ABSTIME</code> is not set in the argument flags, <code>timer_settime()</code>
will behave as if the time until next expiration is set to be equal to the
interval specified by the <code>it_value</code> member of value. That is, the timer will
expire in <code>it_value</code> nanoseconds from when the call is made. If the flag
<code>TIMER_ABSTIME</code> is set in the argument flags, <code>timer_settime()</code> will behave as
if the time until next expiration is set to be equal to the difference between
the absolute time specified by the <code>it_value</code> member of value and the current
value of the clock associated with <code>timerid</code>. That is, the timer will expire
when the clock reaches the value specified by the <code>it_value</code> member of value.
If the specified time has already passed, the function will succeed and the
expiration notification will be made.
</p>
<p>
The reload value of the timer will be set to the value specified by the
<code>it_interval</code> member of value. When a timer is armed with a non-zero
<code>it_interval</code>, a periodic (or repetitive) timer is specified.
</p>
<p>
Time values that are between two consecutive non-negative integer multiples
of the resolution of the specified timer will be rounded up to the larger
multiple of the resolution. Quantization error will not cause the timer to
expire earlier than the rounded time value.
</p>
<p>
If the argument <code>ovalue</code> is not NULL, the t<code>imer_settime()</code> function will store,
in the location referenced by <code>ovalue</code>, a value representing the previous
amount of time before the timer would have expired, or zero if the timer was
disarmed, together with the previous timer reload value. Timers will not
expire before their scheduled time.
</p>
<b>NOTE:</b>At present, the <code>ovalue</code> argument is ignored.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. The pre-thread timer, previously created by the call to timer_create(), to be be set.</li>
<li><code>flags</code>. Specify characteristics of the timer (see above)</li>
<li><code>value</code>. Specifies the timer value to set</li>
<li><code>ovalue</code>. A location in which to return the time remaining from the previous timer setting (ignored).</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If the timer_gettime() succeeds, a value of 0 (OK) will be returned.
If an error occurs, the value -1 (ERROR) will be returned, and
<a href="#ErrnoAccess"><code>errno</code></a> set to indicate the error.
</p>
<ul>
<li><code>EINVAL</code>. The timerid argument does not correspond to an ID returned by timer_create() but not yet deleted by timer_delete().</li>
<li><code>EINVAL</code>. A value structure specified a nanosecond value less than zero or greater than or equal to 1000 million,
and the it_value member of that structure did not specify zero seconds and nanoseconds.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>The <code>ovalue</code> argument is ignored.</li>
</ul>
<H3><a name="timergettime">2.7.12 timer_gettime</a></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_gettime(timer_t timerid, struct itimerspec *value);
</pre>
<p>
<b>Description:</b>
The <code>timer_gettime()</code> function will store the amount of time until the
specified timer, <code>timerid</code>, expires and the reload value of the timer into the
space pointed to by the <code>value</code> argument. The <code>it_value</code> member of this structure
will contain the amount of time before the timer expires, or zero if the timer
is disarmed. This value is returned as the interval until timer expiration,
even if the timer was armed with absolute time. The <code>it_interval</code> member of
<code>value</code> will contain the reload value last set by <code>timer_settime()</code>.
</p>
<p>
Due to the asynchronous operation of this function, the time reported
by this function could be significantly more than that actual time
remaining on the timer at any time.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. Specifies pre-thread timer, previously created by the call to
t<code>imer_create()</code>, whose remaining count will be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>timer_gettime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>EINVAL</code>.
The <code>timerid</code> argument does not correspond to an ID returned by
<code>timer_create()</code> but not yet deleted by <code>timer_delete()</code>.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<H3><a name="timergetoverrun">2.7.13 timer_getoverrun</a></H3>
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_getoverrun(timer_t timerid);
</pre>
<p>
<b>Description:</b>
Only a single signal will be queued to the process for a given timer at any
point in time. When a timer for which a signal is still pending expires, no
signal will be queued, and a timer overrun will occur. When a timer
expiration signal is delivered to or accepted by a process, if the
implementation supports the <i>Realtime Signals Extension</i>, the
<code>timer_getoverrun()</code> function will return the timer expiration overrun count for
the specified timer. The overrun count returned contains the number of extra
timer expirations that occurred between the time the signal was generated
(queued) and when it was delivered or accepted, up to but not including an
implementation-defined maximum of <code>DELAYTIMER_MAX</code>. If the number of such
extra expirations is greater than or equal to <code>DELAYTIMER_MAX</code>, then the
overrun count will be set to <code>DELAYTIMER_MAX</code>. The value returned by
<code>timer_getoverrun()</code> will apply to the most recent expiration signal delivery
or acceptance for the timer. If no expiration signal has been delivered
for the timer, or if the <i>Realtime Signals Extension</i> is not supported, the
return value of <code>timer_getoverrun()</code> is unspecified.
</p>
<p>
<b>NOTE:</b> This interface is not currently implemented in NuttX.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. Specifies pre-thread timer, previously created by the call to
<code>timer_create()</code>, whose overrun count will be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
If the <code>timer_getoverrun()</code> function succeeds, it will return the timer
expiration overrun count as explained above. <code>timer_getoverrun()</code> will fail if:
</p>
<ul>
<li><code>EINVAL</code>.
The <code>timerid</code> argument does not correspond to an ID returned by
<code>timer_create()</code> but not yet deleted by <code>timer_delete()</code>.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>This interface is not currently implemented by NuttX.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<h3><a name="gettimeofday">2.7.14 gettimeofday</a></h3>
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/time.h>
int gettimeofday(struct timeval *tp, void *tzp);
</pre>
<p>
<b>Description:</b>
This implementation of <code>gettimeofday()</code> is simply a thin wrapper around
<a href="#clockgettime"><code>clock_gettime()</code></a>.
It simply calls <code>clock_gettime()</code> using the <code>CLOCK_REALTIME</code> timer and
converts the result to the required <code>struct timeval</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>tp</code>. The current time will be returned to this user provided location.</li>
<li><code>tzp</code>. A reference to the timezone -- <i>IGNORED</i>.</li>
</ul>
<p>
<b>Returned Values:</b>
See <a href="#clockgettime"><code>clock_gettime()</code></a>.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Signals"><h2>2.8 Signal Interfaces</h2></a>
</td>
</tr>
</table>
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
<p>
NuttX provides signal interfaces for tasks. Signals are used to
alter the flow control of tasks by communicating asynchronous events
within or between task contexts.
Any task or interrupt handler can post (or send) a signal to a particular task.
The task being signaled will execute task-specified signal handler
function the next time that the task has priority.
The signal handler is a user-supplied function that is bound to
a specific signal and performs whatever actions are necessary
whenever the signal is received.
</p>
<p>
There are no predefined actions for any signal.
The default action for all signals (i.e., when no signal handler has
been supplied by the user) is to ignore the signal.
In this sense, all NuttX are <i>real time</i> signals.
</p>
<p>
Tasks may also suspend themselves and wait until a signal is received.
</p>
<p>
The following signal handling interfaces are provided by NuttX:
</p>
<ul>
<li><a href="#sigemptyset">2.8.1 sigemptyset</a></li>
<li><a href="#sigfillset">2.8.2 sigfillset</a></li>
<li><a href="#sigaddset">2.8.3 sigaddset</a></li>
<li><a href="#sigdelset">2.8.4 sigdelset</a></li>
<li><a href="#sigismember">2.8.5 sigismember</a></li>
<li><a href="#sigaction">2.8.6 sigaction</a></li>
<li><a href="#sigprocmask">2.8.7 sigprocmask</a></li>
<li><a href="#sigpending">2.8.8 sigpending</a></li>
<li><a href="#sigsuspend">2.8.9 sigsuspend</a></li>
<li><a href="#sigwaitinfo">2.8.10 sigwaitinfo</a></li>
<li><a href="#sigtimedwait">2.8.11 sigtimedwait</a></li>
<li><a href="#sigqueue">2.8.12 sigqueue</a></li>
<li><a href="#kill">2.8.13 kill</a></li>
<H3><a name="sigemptyset">2.8.1 sigemptyset</a></H3>
<p>
<b>Description:</b> This function initializes the signal set specified
by set such that all signals are excluded.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to initialize.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal set cannot be initialized.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigfillset">2.8.2 sigfillset</a></H3>
<p>
<b>Description:</b> This function initializes the signal set specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to initialize
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal set cannot be initialized.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigaddset">2.8.3 sigaddset</a></H3>
#include <signal.h>
int sigaddset(sigset_t *set, int signo);
<p>
<b>Description:</b> This function adds the signal specified by
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to add signal to
<li><I>signo</I>. Signal to add
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigdelset">2.8.4 sigdelset</a></H3>
#include <signal.h>
int sigdelset(sigset_t *set, int signo);
<p>
<b>Description:</b> This function deletes the signal specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to delete the signal from
<li><I>signo</I>. Signal to delete
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigismember">2.8.5 sigismember</a></H3>
#include <signal.h>
int sigismember(const sigset_t *set, int signo);
<p>
<b>Description:</b> This function tests whether the signal specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to test
<li><I>signo</I>. Signal to test for
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>1 (TRUE), if the specified signal is a member of the set,
<li>0 (OK or FALSE), if it is not, or
<li>-1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigaction">2.8.6 sigaction</a></H3>
#include <signal.h>
int sigaction( int signo, const struct sigaction *act,
struct sigaction *oact );
<p>
<b>Description:</b> This function allows the calling task to
examine and/or specify the action to be associated with a specific
signal.
The structure sigaction, used to describe an action to be taken, is defined
to include the following members:
<ul>
<li><I>sa_u.sa_handler</I>. A pointer to a signal-catching function.
<li><I>sa_u.sa_sigaction</I>. An alternative form for the signal catching
<li><I>sa_flags</I>: Special flags to affect behavior of a signal.
</ul>
<p>
If the argument act is not NULL, it points to a structure specifying the
action to be associated with the specified signal. If the argument oact
is not NULL, the action previously associated with the signal is stored
in the location pointed to by the argument oact. If the argument act is
NULL, signal handling is unchanged by this function call; thus, the call
can be used to inquire about the current handling of a given signal.
When a signal is caught by a signal-catching function installed by the
sigaction() function, a new signal mask is calculated and installed for
the duration of the signal-catching function. This mask is formed by taking
the union of the current signal mask and the value of the sa_mask for the
signal being delivered, and then including the signal being delivered. If
and when the signal handler returns, the original signal mask is restored.
Signal catching functions execute in the same address environment as the
task that called sigaction() to install the signal-catching function.
Once an action is installed for a specific signal, it remains installed
until another action is explicitly requested by another call to
sigaction().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sig</I>. Signal of interest
<li><I>act</I>. Location of new handler
<li><I>oact</I>. Location to store old handler
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the POSIX implementation include:
<ul>
<li>Special values of sa_handler in the struct sigaction act input
<H3><a name="sigprocmask">2.8.7 sigprocmask</a></H3>
#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
<p>
<b>Description:</b> This function allows the calling task to
examine and/or change its signal mask. If the set is not NULL,
then it points to a set of signals to be used to change the currently
blocked set. The value of how indicates the manner in which the
set is changed.
If there are any pending unblocked signals after the call to sigprocmask(),
those signals will be delivered before sigprocmask() returns.
If sigprocmask() fails, the signal mask of the task is not changed.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>how</I>. How the signal mast will be changed:
<ul>
<li><I>SIG_BLOCK</I>. The resulting set is the union of the
current set and the signal set pointed to by the <I>set</I> input parameter.
<li><I>SIG_UNBLOCK</I>. The resulting set is the intersection
of the current set and the complement of the signal set pointed
to by the <I>set</I> input parameter.
<li><I>SIG_SETMASK</I>. The resulting set is the signal set
</ul>
<li><I>set</I>. Location of the new signal mask
<li><I>oset</I>. Location to store the old signal mask
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if how is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigpending">2.8.8 sigpending</a></H3>
<p>
<b>Description:</b> This function stores the returns the set of
signals that are blocked for delivery and that are pending for
the calling task in the space pointed to by set.
If the task receiving a signal has the signal blocked via its
sigprocmask, the signal will pend until it is unmasked. Only one pending
signal (for a given signo) is retained by the system. This is consistent
with POSIX which states: "If a subsequent occurrence of a pending
signal is generated, it is implementation defined as to whether the signal
is delivered more than once."
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. The location to return the pending signal set.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR)
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigsuspend">2.8.9 sigsuspend</a></H3>
#include <signal.h>
int sigsuspend( const sigset_t *set );
<p>
<b>Description:</b> The sigsuspend() function replaces the signal mask
with the set of signals pointed to by the argument set and then suspends
the task until delivery of a signal to the task.
If the effect of the set argument is to unblock a pending signal, then
no wait is performed.
Waiting for an empty signal set stops a task without freeing any
resources (a very bad idea).
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. The value of the signal <b>mask</b> to use while
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>-1 (ERROR) always
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the POSIX specification include:
<ul>
<li>POSIX does not indicate that the original signal mask is restored.
<li>POSIX states that sigsuspend() "suspends the task until
delivery of a signal whose action is either to execute a signal-catching
function or to terminate the task." Only delivery of the signal
is required in the present implementation (even if the signal is ignored).
<H3><a name="sigwaitinfo">2.8.10 sigwaitinfo</a></H3>
#include <signal.h>
int sigwaitinfo(const sigset_t *set, struct siginfo *info);
<p>
<b>Description:</b> This function is equivalent to sigtimedwait()
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. The set of pending signals to wait for.
<li><I>info</I>. The returned signal values
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>Signal number that cause the wait to be terminated, otherwise
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigtimedwait">2.8.11 sigtimedwait</a></H3>
#include <signal.h>
int sigtimedwait( const sigset_t *set, struct siginfo *info,
const struct timespec *timeout );
<p>
<b>Description:</b> This function selects the pending signal set
specified by the argument set. If multiple signals are pending in set,
it will remove and return the lowest numbered one. If no signals in set
are pending at the time of the call, the calling task will be suspended
until one of the signals in set becomes pending OR until the task
interrupted by an unblocked signal OR until the time interval specified by
timeout (if any), has expired. If timeout is NULL, then the timeout interval
is forever.
If the info argument is non-NULL, the selected signal number is
stored in the si_signo member and the cause of the signal is store
in the si_code member. The content of si_value is only meaningful
if the signal was generated by sigqueue(). The following values
for si_code are defined in signal.h:
<ul>
<li><I>SI_USER</I>. Signal sent from kill, raise, or abort
<li><I>SI_QUEUE</I>. Signal sent from sigqueue
<li><I>SI_TIMER</I>. Signal is result of timer expiration
<li><I>SI_ASYNCIO</I>. Signal is the result of asynchronous IO completion
<li><I>SI_MESGQ</I>. Signal generated by arrival of a message on an empty message queue.
</ul>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. The set of pending signals to wait for.
<li><I>info</I>. The returned signal values
<li><I>timeout</I>. The amount of time to wait
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>Signal number that cause the wait to be terminated, otherwise
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the POSIX interface include:
<ul>
<li>Values for si_codes differ
<li>No mechanism to return cause of ERROR. (It can be inferred
<li>POSIX states that "If no signal is pending at the time of the
call, the calling task shall be suspended until one or more signals
in set become pending or until it is interrupted by an unblocked,
<I>caught</I> signal." The present implementation does not require
that the unblocked signal be caught; the task will be resumed even if
the unblocked signal is ignored.
<H3><a name="sigqueue">2.8.12 sigqueue</a></H3>
int sigqueue (int tid, int signo, union sigval value);
<p>
<b>Description:</b> This function sends the signal specified by
signo with the signal parameter value to the task specified
by tid.
If the receiving task has the signal blocked via its sigprocmask,
the signal will pend until it is unmasked. Only one pending signal
(for a given signo) is retained by the system. This is consistent with
POSIX which states: "If a subsequent occurrence of a pending signal
is generated, it is implementation defined as to whether the signal
is delivered more than once."
<p>
<b>Input Parameters:</b>
<ul>
<li><I>tid</I>. ID of the task to receive signal
<li><I>signo</I>. Signal number
<li><I>value</I>. Value to pass to task with signal
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>
On success (at least one signal was sent), zero (OK) is returned.
On error, -1 (ERROR) is returned, and <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately.
<ul>
<li><code>EGAIN</code>. The limit of signals which may be queued has been reached.</li>
<li><code>EINVAL</code>. signo was invalid.</li>
<li><code>EPERM</code>. The task does not have permission to send the signal to the receiving process.</li>
<li><code>ESRCH</code>. No process has a PID matching pid.</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the POSIX interface include:
<ul>
<li>Default action is to ignore signals.
<li>Signals are processed one at a time in order
<li>POSIX states that, "If signo is zero (the null signal), error
checking will be performed but no signal is actually sent."
There is no null signal in the present implementation; a zero signal will
be sent.
<H3><a name="kill">2.8.13 kill</a></H3>
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);
The kill() system call can be used to send any signal to
any task.
</p>
<p>
If the receiving task has the signal blocked via its sigprocmask,
the signal will pend until it is unmasked. Only one pending signal
(for a given signo) is retained by the system. This is consistent with
POSIX which states: "If a subsequent occurrence of a pending signal
is generated, it is implementation defined as to whether the signal
is delivered more than once."
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>pid</I>. The id of the task to receive the signal.
The POSIX <code>kill()</code> specification encodes process group
information as zero and negative pid values.
Only positive, non-zero values of pid are supported by this
implementation. ID of the task to receive signal
If signo is zero, no signal is sent, but all error checking is performed.
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
Differences from the POSIX interface include:
</p>
<ul>
<li>Default action is to ignore signals.</li>
<li>Signals are processed one at a time in order </li>
<li>Sending of signals to 'process groups' is not supported in NuttX.</li>
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Pthread"><h2>2.9 Pthread Interfaces</h2></a>
</td>
</tr>
</table>
<p>
NuttX does not support <i>processes</i> in the way that, say, Linux does.
NuttX only supports simple threads or tasks running within the same address space.
For the most part, threads and tasks are interchangeable and differ primarily
only in such things as the inheritance of file descriptors.
Basically, threads are initialized and uninitialized differently and share a
few more resources than tasks.
<p>
The following pthread interfaces are supported in some form by NuttX:
</p>
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
<li><a href="#pthreadattrinit">2.9.1 pthread_attr_init</a></li>
<li><a href="#pthreadattrdestroy">2.9.2 pthread_attr_destroy</a></li>
<li><a href="#pthreadattrsetschedpolity">2.9.3 pthread_attr_setschedpolicy</a></li>
<li><a href="#pthreadattrgetschedpolicy">2.9.4 pthread_attr_getschedpolicy</a></li>
<li><a href="#pthreadattrsetschedparam">2.9.5 pthread_attr_setschedparam</a></li>
<li><a href="#pthreadattrgetschedparam">2.9.6 pthread_attr_getschedparam</a></li>
<li><a href="#pthreadattrsetinheritsched">2.9.7 pthread_attr_setinheritsched</a></li>
<li><a href="#pthreadattrgetinheritsched">2.9.8 pthread_attr_getinheritsched</a></li>
<li><a href="#pthreadattrsetstacksize">2.9.9 pthread_attr_setstacksize</a></li>
<li><a href="#pthreadattrgetstacksize">2.9.10 pthread_attr_getstacksize</a></li>
<li><a href="#pthreadcreate">2.9.11 pthread_create</a></li>
<li><a href="#pthreaddetach">2.9.12 pthread_detach</a></li>
<li><a href="#pthreadexit">2.9.13 pthread_exit</a></li>
<li><a href="#pthreadcancel">2.9.14 pthread_cancel</a></li>
<li><a href="#pthreadsetcancelstate">2.9.15 pthread_setcancelstate</a></li>
<li><a href="#pthreadtestcancelstate">2.9.16 pthread_testcancelstate</a></li>
<li><a href="#pthreadjoin">2.9.17 pthread_join</a></li>
<li><a href="#pthreadyield">2.9.18 pthread_yield</a></li>
<li><a href="#pthreadself">2.9.19 pthread_self</a></li>
<li><a href="#pthreadgetschedparam">2.9.20 pthread_getschedparam</a></li>
<li><a href="#pthreadsetschedparam">2.9.21 pthread_setschedparam</a></li>
<li><a href="#pthreadkeycreate">2.9.22 pthread_key_create</a></li>
<li><a href="#pthreadsetspecific">2.9.23 pthread_setspecific</a></li>
<li><a href="#pthreadgetspecific">2.9.24 pthread_getspecific</a></li>
<li><a href="#pthreadkeydelete">2.9.25 pthread_key_delete</a></li>
<li><a href="#pthreadmutexattrinit">2.9.26 pthread_mutexattr_init</a></li>
<li><a href="#pthreadmutexattrdestroy">2.9.27 pthread_mutexattr_destroy</a></li>
<li><a href="#pthreadmutexattrgetpshared">2.9.28 pthread_mutexattr_getpshared</a></li>
<li><a href="#pthreadmutexattrsetpshared">2.9.29 pthread_mutexattr_setpshared</a></li>
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
<li><a href="#pthreadmutexattrgettype">2.9.30 pthread_mutexattr_gettype</a></li>
<li><a href="#pthreadmutexattrsettype">2.9.31 pthread_mutexattr_settype</a></li>
<li><a href="#pthreadmutexinit">2.9.32 pthread_mutex_init</a></li>
<li><a href="#pthreadmutexdestrory">2.9.33 pthread_mutex_destroy</a></li>
<li><a href="#pthreadmutexlock">2.9.34 pthread_mutex_lock</a></li>
<li><a href="#pthreadmutextrylock">2.9.35 pthread_mutex_trylock</a></li>
<li><a href="#pthreadmutexunlock">2.9.36 pthread_mutex_unlock</a></li>
<li><a href="#pthreadconaddrinit">2.9.37 pthread_condattr_init</a></li>
<li><a href="#pthreadocndattrdestroy">2.9.38 pthread_condattr_destroy</a></li>
<li><a href="#pthreadcondinit">2.9.39 pthread_cond_init</a></li>
<li><a href="#pthreadconddestroy">2.9.40 pthread_cond_destroy</a></li>
<li><a href="#pthreadcondbroadcast">2.9.41 pthread_cond_broadcast</a></li>
<li><a href="#pthreadcondsignal">2.9.42 pthread_cond_signal</a></li>
<li><a href="#pthreadcondwait">2.9.43 pthread_cond_wait</a></li>
<li><a href="#pthreadcondtimedwait">2.9.44 pthread_cond_timedwait</a></li>
<li><a href="#pthreadbarrierattrinit">2.9.45 pthread_barrierattr_init</a></li>
<li><a href="#pthreadbarrierattrdestroy">2.9.46 pthread_barrierattr_destroy</a></li>
<li><a href="#pthreadbarrierattrsetpshared">2.9.47 pthread_barrierattr_setpshared</a></li>
<li><a href="#pthreadbarrierattrgetpshared">2.9.48 pthread_barrierattr_getpshared</a></li>
<li><a href="#pthreadbarrierinit">2.9.49 pthread_barrier_init</a></li>
<li><a href="#pthreadbarrierdestroy">2.9.50 pthread_barrier_destroy</a></li>
<li><a href="#pthreadbarrierwait">2.9.51 pthread_barrier_wait</a></li>
<li><a href="#pthreadonce">2.9.52 pthread_once</a></li>
<li><a href="#pthreadkill">2.9.53 pthread_kill</a></li>
<li><a href="#pthreadsigmask">2.9.54 pthread_sigmask</a></li>
</ul>
<p>
No support for the following pthread interfaces is provided by NuttX:
</p>
<ul>
<li><code>pthread_atfork</code>. register fork handlers.</li>
<li><code>pthread_attr_getdetachstate</code>. get and set the detachstate attribute.</li>
<li><code>pthread_attr_getguardsize</code>. get and set the thread guardsize attribute.</li>
<li><code>pthread_attr_getinheritsched</code>. get and set the inheritsched attribute.</li>
<li><code>pthread_attr_getscope</code>. get and set the contentionscope attribute.</li>
<li><code>pthread_attr_getstack</code>. get and set stack attributes.</li>
<li><code>pthread_attr_getstackaddr</code>. get and set the stackaddr attribute.</li>
<li><code>pthread_attr_setdetachstate</code>. get and set the detachstate attribute.</li>
<li><code>pthread_attr_setguardsize</code>. get and set the thread guardsize attribute.</li>
<li><code>pthread_attr_setscope</code>. get and set the contentionscope attribute.</li>
<li><code>pthread_attr_setstack</code>. get and set stack attributes.</li>
<li><code>pthread_attr_setstackaddr</code>. get and set the stackaddr attribute.</li>
<li><code>pthread_barrier_destroy</code>. destroy and initialize a barrier object.</li>
<li><code>pthread_barrier_init</code>. destroy and initialize a barrier object.</li>
<li><code>pthread_barrier_wait</code>. synchronize at a barrier.</li>
<li><code>pthread_cleanup_pop</code>. establish cancellation handlers.</li>
<li><code>pthread_cleanup_push</code>. establish cancellation handlers.</li>
<li><code>pthread_condattr_getclock</code>. set the clock selection condition variable attribute.</li>
<li><code>pthread_condattr_getpshared</code>. get the process-shared condition variable attribute.</li>
<li><code>pthread_condattr_setclock</code>. set the clock selection condition variable attribute.</li>
<li><code>pthread_condattr_setpshared</code>. set the process-shared condition variable attribute.</li>
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
<li><code>pthread_getconcurrency</code>. get and set the level of concurrency.</li>
<li><code>pthread_getcpuclockid</code>. access a thread CPU-time clock.</li>
<li><code>pthread_mutex_getprioceiling</code>. get and set the priority ceiling of a mutex.</li>
<li><code>pthread_mutex_setprioceiling</code>. get and set the priority ceiling of a mutex.</li>
<li><code>pthread_mutex_timedlock</code>. lock a mutex.</li>
<li><code>pthread_mutexattr_getprioceiling</code>. get and set the prioceiling attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_getprotocol</code>. get and set the protocol attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_setprioceiling</code>. get and set the prioceiling attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_setprotocol</code>. get and set the protocol attribute of the mutex attributes object.</li>
<li><code>pthread_rwlock_destroy</code>. destroy and initialize a read-write lock object.</li>
<li><code>pthread_rwlock_init</code>. destroy and initialize a read-write lock object.</li>
<li><code>pthread_rwlock_rdlock</code>. lock a read-write lock object for reading.</li>
<li><code>pthread_rwlock_timedrdlock</code>. lock a read-write lock for reading.</li>
<li><code>pthread_rwlock_timedwrlock</code>. lock a read-write lock for writing.</li>
<li><code>pthread_rwlock_tryrdlock</code>. lock a read-write lock object for reading.</li>
<li><code>pthread_rwlock_trywrlock</code>. lock a read-write lock object for writing.</li>
<li><code>pthread_rwlock_unlock</code>. unlock a read-write lock object.</li>
<li><code>pthread_rwlock_wrlock</code>. lock a read-write lock object for writing.</li>
<li><code>pthread_rwlockattr_destroy</code>. destroy and initialize the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_getpshared</code>. get and set the process-shared attribute of the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_init</code>. destroy and initialize the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_setpshared</code>. get and set the process-shared attribute of the read-write lock attributes object.</li>
<li><code>pthread_setcanceltype</code>. set cancelability state.</li>
<li><code>pthread_setconcurrency</code>. get and set the level of concurrency.</li>
<li><code>pthread_spin_destroy</code>. destroy or initialize a spin lock object.</li>
<li><code>pthread_spin_init</code>. destroy or initialize a spin lock object.</li>
<li><code>pthread_spin_lock</code>. lock a spin lock object.</li>
<li><code>pthread_spin_trylock</code>. lock a spin lock object.</li>
<li><code>pthread_spin_unlock</code>. unlock a spin lock object.</li>
<li><code>pthread_testcancel</code>. set cancelability state.</li>
</ul>
<H3><a name="pthreadattrinit">2.9.1 pthread_attr_init</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_init(pthread_attr_t *attr);
Initializes a thread attributes object (attr) with default values
for all of the individual attributes used by the implementation.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<p>
<H3><a name="pthreadattrdestroy">2.9.2 pthread_attr_destroy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_destroy(pthread_attr_t *attr);
An attributes object can be deleted when it is no longer needed.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<p>
<H3><a name="pthreadattrsetschedpolity">2.9.3 pthread_attr_setschedpolicy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_setschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrgetschedpolicy">2.9.4 pthread_attr_getschedpolicy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_getschedpolicy(pthread_attr_t *attr, int *policy);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrsetschedparam">2.9.5 pthread_attr_getschedpolicy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_setschedparam(pthread_attr_t *attr,
const struct sched_param *param);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrgetschedparam">2.9.6 pthread_attr_getschedparam</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_getschedparam(pthread_attr_t *attr,
struct sched_param *param);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getschedparam()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrsetinheritsched">2.9.7 pthread_attr_setinheritsched</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_setinheritsched()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<p>
<H3><a name="pthreadattrgetinheritsched">2.9.8 pthread_attr_getinheritsched</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_getinheritsched(const pthread_attr_t *attr,
int *inheritsched);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getinheritsched()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrsetstacksize">2.9.9 pthread_attr_setstacksize</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_setstacksize(pthread_attr_t *attr, long stacksize);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_setstacksize()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrgetstacksize">2.9.10 pthread_attr_getstacksize</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_getstacksize(pthread_attr_t *attr, long *stackaddr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getstacksize()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcreate">2.9.11 pthread_create</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_create(pthread_t *thread, pthread_attr_t *attr,
pthread_startroutine_t startRoutine,
pthread_addr_t arg);
To create a thread object and runnable thread, a routine
must be specified as the new thread's start routine. An
argument may be passed to this routine, as an untyped
address; an untyped address may also be returned as the
routine's value. An attributes object may be used to
specify details about the kind of thread being created.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_create()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreaddetach">2.9.12 pthread_detach</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_detach(pthread_t thread);
A thread object may be "detached" to specify that the
return value and completion status will not be requested.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_detach()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadexit">2.9.13 pthread_exit</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
void pthread_exit(pthread_addr_t pvValue);
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_exit()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcancel">2.9.14 pthread_cancel</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_cancel(pthread_t thread);
<p>The pthread_cancel() function shall request that thread
be canceled. The target thread's cancelability state determines
when the cancellation takes effect. When the
cancellation is acted on, thread shall be terminated.</p>
<p>When cancelability is disabled, all cancels are held pending
in the target thread until the thread changes the cancelability.
When cancelability is deferred, all cancels are held pending in
the target thread until the thread changes the cancelability or
calls pthread_testcancel().</p>
<p>Cancelability is asynchronous; all cancels are acted upon
immediately (when enable), interrupting the thread with its processing.</p>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>thread</I>.
If successful, the <I>pthread_cancel()</I> function will return zero (<I>OK</I>).
Otherwise, an error number will be returned to indicate the error:
No thread could be found corresponding to that specified by the given thread ID.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li>The thread-specific data destructor functions shall be called for thread.
However, these destructors are not currently supported.</li>
<li>Cancellation types are not supported. The thread will be canceled
at the time that pthread_cancel() is called or, if cancellation is disabled, at
the time when cancellation is re-enabled.</li>
<li><tt>pthread_testcancel()</tt> is not supported.</li>
<li>Thread cancellation at <i>cancellation points</i> is not supported.</li>
<H3><a name="pthreadsetcancelstate">2.9.15 pthread_setcancelstate</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_setcancelstate(int state, int *oldstate);
<p>
<b>Description:</b>
<p>The <i>pthread_setcancelstate()</i> function atomically
sets both the calling thread's cancelability state to the indicated
state and returns the previous cancelability state at the location
referenced by oldstate.
Legal values for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.<.li>
<p>Any pending thread cancellation may occur at the time that the
cancellation state is set to PTHREAD_CANCEL_ENABLE.</p>
New cancellation state. One of PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.<.li>
If successful, the <I>pthread_setcancelstate()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be returned to indicate the error:
No thread could be found corresponding to that specified by the given thread ID.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadtestcancelstate">2.9.16 pthread_testcancelstate</a></H3>
<p>
<b>Function Prototype:</b>
<p>
<p>
<b>Description:</b>
<p><b>NOT SUPPORTED</b>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_setcancelstate()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadjoin">2.9.17 pthread_join</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_join(pthread_t thread, pthread_addr_t *ppvValue);
A thread can await termination of another thread and retrieve
the return value of the thread.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_join()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadyield">2.9.18 pthread_yield</a></H3>
<p>
<b>Function Prototype:</b>
<p>
A thread may tell the scheduler that its processor can be
made available.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_yield()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadself">2.9.19 pthread_self</a></H3>
<p>
<b>Function Prototype:</b>
<p>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_self()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadgetschedparam">2.9.20 pthread_getschedparam</a></H3>
#include <pthread.h>
int pthread_getschedparam(pthread_t thread, int *policy,
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
struct sched_param *param);
</pre>
<p>
<b>Description:</b>
The <code>pthread_getschedparam()</code> functions will get the
scheduling policy and parameters of threads.
For <code>SCHED_FIFO</code> and <code>SCHED_RR</code>, the only
required member of the <code>sched_param</code> structure is the
priority <code>sched_priority</code>.
</p>
<p>
The <code>pthread_getschedparam()</code> function will retrieve the
scheduling policy and scheduling parameters for the thread whose thread
ID is given by <code>thread</code> and will store those values in
<code>policy</code> and <code>param</code>, respectively.
The priority value returned from <code>pthread_getschedparam()</code>
will be the value specified by the most recent <code>pthread_setschedparam()</code>,
<code>pthread_setschedprio()</code>, or <code>pthread_create()</code> call
affecting the target thread.
It will not reflect any temporary adjustments to its priority (such as might
result of any priority inheritance, for example).
</p>
<p>
The policy parameter may have the value <code>SCHED_FIFO</code> or <code>SCHED_RR</code>
(<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code>, in particular, are not supported).
The <code>SCHED_FIFO</code> and <code>SCHED_RR<code> policies will have a single
scheduling parameter, <code>sched_priority</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>thread</code>.
The ID of thread whose scheduling parameters will be queried.
</li>
<li>
<code>policy</code>.
The location to store the thread's scheduling policy.
</li>
<li>
<code>param</code>.
The location to store the thread's priority.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (<code>OK</code>) if successful.
Otherwise, the error code <code>ESRCH</code> if the value specified by
<code>thread</code> does not refer to an existing thread.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<H3><a name="pthreadsetschedparam">2.9.21 pthread_setschedparam</a></H3>
#include <pthread.h>
int pthread_setschedparam(pthread_t thread, int policy,
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
const struct sched_param *param);
</pre>
<p>
<b>Description:</b>
The <code>pthread_setschedparam()</code> functions will set the scheduling policy
and parameters of threads.
For <code>SCHED_FIFO</code> and <code>SCHED_RR</code>, the only required member
of the <code>sched_param</code> structure is the priority <code>sched_priority</code>.
</p>
</p>
The <code>pthread_setschedparam()</code> function will set the scheduling policy
and associated scheduling parameters for the thread whose thread ID is given by
<code>thread</code> to the policy and associated parameters provided in
<code>policy</code> and <code>param</code>, respectively.
</p>
<p>
The policy parameter may have the value <code>SCHED_FIFO</code> or <code>SCHED_RR</code>.
(<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code>, in particular, are not supported).
The <code>SCHED_FIFO</code> and <code>SCHED_RR</code> policies will have a single
scheduling parameter, <code>sched_priority</code>.
</p>
<p>
If the <code>pthread_setschedparam()</code> function fails, the scheduling
parameters will not be changed for the target thread.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>thread</code>.
The ID of thread whose scheduling parameters will be modified.
</li>
<li>
<code>policy</code>.
The new scheduling policy of the thread.
Either <code>SCHED_FIFO</code> or <code>SCHED_RR<code>.
<code>SCHED_OTHER<code> and <code>SCHED_SPORADIC<code> are not supported.
</li>
<li>
<code>param</code>.
The location to store the thread's priority.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>pthread_setschedparam()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
</p>
<ul>
<li>
<code>EINVAL</code>.
The value specified by <code>policy</code> or one of the scheduling parameters
associated with the scheduling policy <code>policy</code> is invalid.
</li>
<li>
<code>ENOTSUP</code>.
An attempt was made to set the policy or scheduling parameters to an unsupported
value (<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code> in particular are
not supported)
</li>
<li>
<code>EPERM</code>.
The caller does not have the appropriate permission to set either the scheduling
parameters or the scheduling policy of the specified thread.
Or, the implementation does not allow the application to modify one of the
parameters to the value specified.
</li>
<li>
<code>ESRCH</code>.
The value specified by thread does not refer to a existing thread.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<H3><a name="pthreadkeycreate">2.9.22 pthread_key_create</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_key_create( pthread_key_t *key, void (*destructor)(void*) )
This function creates a thread-specific data key visible
to all threads in the system. Although the same key value
may be used by different threads, the values bound to
the key by <I>pthread_setspecific()</I> are maintained on a
per-thread basis and persist for the life of the calling
thread.
Upon key creation, the value <I>NULL</I> will be associated with
the new key in all active threads. Upon thread
creation, the value <I>NULL</I> will be associated with all
defined keys in the new thread.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>key</I> is a pointer to the key to create.
<li><I>destructor</I> is an optional destructor() function that may
be associated with each key that is invoked when a
thread exits. However, this argument is ignored in
the current implementation.
If successful, the <I>pthread_key_create()</I> function will
store the newly created key value at *<I>key</I> and return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><I>EAGAIN</I>. The system lacked sufficient resources
to create another thread-specific data key, or the
system-imposed limit on the total number of keys
per task {<I>PTHREAD_KEYS_MAX</I>} has been exceeded
<li><I>ENONMEM</I> Insufficient memory exists to create the key.
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li>The present implementation ignores the destructor argument.
</ul>
<H3><a name="pthreadsetspecific">2.9.23 pthread_setspecific</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_setspecific( pthread_key_t key, void *value )
The <I>pthread_setspecific()</I> function associates a thread-
specific value with a key obtained via a previous call
to <I>pthread_key_create()</I>. Different threads may bind
different values to the same key. These values are
typically pointers to blocks of dynamically allocated
memory that have been reserved for use by the calling
thread.
The effect of calling <I>pthread_setspecific()</I> with a key value
not obtained from <I>pthread_key_create()</I> or after a key has been
deleted with <I>pthread_key_delete()</I> is undefined.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>key</I>. The data key to set the binding for.
<li><I>value</I>. The value to bind to the key.
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, <I>pthread_setspecific()</I> will return zero (<I>OK</I>).
Otherwise, an error number will be returned:
<p>
<ul>
<li><I>ENOMEM</I>. Insufficient memory exists to associate the value
<li><I>EINVAL</I>. The key value is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li>pthread_setspecific() may be called from a thread-specific data
<H3><a name="pthreadgetspecific">2.9.24 pthread_getspecific</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
void *pthread_getspecific( pthread_key_t key )
The <I>pthread_getspecific()</I> function returns the value
currently bound to the specified key on behalf of the
calling thread.
The effect of calling <I>pthread_getspecific()</I> with a key value
not obtained from <I>pthread_key_create()</I> or after a key has been
deleted with <I>pthread_key_delete()</I> is undefined.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>key</I>. The data key to get the binding for.
</ul>
<p>
<b>Returned Values:</b>
<p>
The function <I>pthread_getspecific()</I> returns the thread-
specific data associated with the given key. If no
thread specific data is associated with the key, then
the value <I>NULL</I> is returned.
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li>pthread_getspecific() may be called from a thread-specific data
<H3><a name="pthreadkeydelete">2.9.25 pthread_key_delete</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_key_delete( pthread_key_t key )
This POSIX function should delete a thread-specific data
key previously returned by <I>pthread_key_create()</I>. However,
this function does nothing in the present implementation.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>key</I>. The key to delete
</ul>
<p>
<b>Returned Values:</b>
<p>
<ul>
<li>Always returns <I>EINVAL</I>.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexattrinit">2.9.26 pthread_mutexattr_init</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutexattr_init(pthread_mutexattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexattrdestroy">2.9.27 pthread_mutexattr_destroy</a></H3>
<p>
#include <pthread.h>
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexattrgetpshared">2.9.28 pthread_mutexattr_getpshared</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr,
int *pshared);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_getpshared()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexattrsetpshared">2.9.29 pthread_mutexattr_setpshared</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_setpshared()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
<h3><a name="pthreadmutexattrgettype">2.9.30 pthread_mutexattr_gettype</a></h3>
<p>
<b>Function Prototype:</b>
<p>
<pre>
#include <pthread.h>
#ifdef CONFIG_MUTEX_TYPES
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type);
#endif
</pre>
<p>
<b>Description:</b> Return the mutex type from the mutex attributes.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>attr</code>. The mutex attributes to query</li>
<li><code>type</code>. Location to return the mutex type. See
<a href="#pthreadmutexattrsettype"><code>pthread_mutexattr_setttyp()</code></a>
for a description of possible mutex types that may be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_settype()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>EINVAL</code>. Parameters <code>attr</code> and/or <code>attr</code> are invalid.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
<h3><a name="pthreadmutexattrsettype">2.9.31 pthread_mutexattr_settype</a></h3>
<p>
<b>Function Prototype:</b>
<p>
<pre>
#include <pthread.h>
#ifdef CONFIG_MUTEX_TYPES
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);
#endif
</pre>
<p>
<b>Description:</b> Set the mutex type in the mutex attributes.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>attr</code>. The mutex attributes in which to set the mutex type.</li>
<li><code>type</code>. The mutex type value to set. The following values are supported:
<ul>
<li><code>PTHREAD_MUTEX_NORMAL</code>. This type of mutex does not detect deadlock. A thread
attempting to re-lock this mutex without first unlocking it will deadlock.
Attempting to unlock a mutex locked by a different thread results in undefined
behavior. Attempting to unlock an unlocked mutex results in undefined behavior. </li>
<li><code>PTHREAD_MUTEX_ERRORCHECK</code>. This type of mutex provides error checking.
A thread attempting to re-lock this mutex without first unlocking it will return with an error.
A thread attempting to unlock a mutex which another thread has locked will return with an error.
A thread attempting to unlock an unlocked mutex will return with an error.</li>
<li><code>PTHREAD_MUTEX_RECURSIVE</code>. A thread attempting to re-lock this mutex without first
unlocking it will succeed in locking the mutex. The re-locking deadlock which can occur with mutexes
of type PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple locks of this mutex
require the same number of unlocks to release the mutex before another thread can acquire the mutex.
A thread attempting to unlock a mutex which another thread has locked will return with an error.
A thread attempting to unlock an unlocked mutex will return with an error.</li>
<li><code>PTHREAD_MUTEX_DEFAULT</code>. The default mutex type (PTHREAD_MUTEX_NORMAL).</li>
</ul>
<p>
In NuttX, <code>PTHREAD_MUTEX_NORMAL</code> is not implemented. Rather, the behavior described
for <code>PTHREAD_MUTEX_ERRORCHECK</code> is the <i>normal</i> behavior.
</p>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_settype()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>EINVAL</code>. Parameters <code>attr</code> and/or <code>attr</code> are invalid.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
<H3><a name="pthreadmutexinit">2.9.32 pthread_mutex_init</a></H3>
#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex,
pthread_mutexattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutex_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexdestrory">2.9.33 pthread_mutex_destroy</a></H3>
#include <pthread.h>
int pthread_mutex_destroy(pthread_mutex_t *mutex);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutex_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexlock">2.9.34 pthread_mutex_lock</a></H3>
#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);
The mutex object referenced by mutex is locked by calling <code>pthread_mutex_lock()</code>.
If the mutex is already locked, the calling thread blocks until the mutex
becomes available. This operation returns with the mutex object referenced
by mutex in the locked state with the calling thread as its owner.
</p>
<p>
If the mutex type is <code>PTHREAD_MUTEX_NORMAL</code>, deadlock detection is not provided.
Attempting to re-lock the mutex causes deadlock. If a thread attempts to unlock
a mutex that it has not locked or a mutex which is unlocked, undefined behavior
results.
</p>
<p>
In NuttX, <code>PTHREAD_MUTEX_NORMAL</code> is not implemented. Rather, the behavior described
for <code>PTHREAD_MUTEX_ERRORCHECK</code> is the <i>normal</i> behavior.
</p>
<p>
If the mutex type is <code>PTHREAD_MUTEX_ERRORCHECK</code>, then error checking is provided.
If a thread attempts to re-lock a mutex that it has already locked, an error
will be returned. If a thread attempts to unlock a mutex that it has not
locked or a mutex which is unlocked, an error will be returned.
</p>
<p>
If the mutex type is <code>PTHREAD_MUTEX_RECURSIVE</code>, then the mutex maintains the concept
of a lock count. When a thread successfully acquires a mutex for the first time,
the lock count is set to one. Every time a thread re-locks this mutex, the lock count
is incremented by one. Each time the thread unlocks the mutex, the lock count is
decremented by one. When the lock count reaches zero, the mutex becomes available
for other threads to acquire. If a thread attempts to unlock a mutex that it has
not locked or a mutex which is unlocked, an error will be returned.
</p>
<p>
If a signal is delivered to a thread waiting for a mutex, upon return from
the signal handler the thread resumes waiting for the mutex as if it was
not interrupted.
</p>
<li><code>mutex</code>. A reference to the mutex to be locked.</li>
If successful, the <I>pthread_mutex_lock()</I> function will return zero (<I>OK</I>).
Otherwise, an error number will be returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<p>Note that this function will never return the error EINTR.</p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutextrylock">2.9.35 pthread_mutex_trylock</a></H3>
#include <pthread.h>
int pthread_mutex_trylock(pthread_mutex_t *mutex);
The function pthread_mutex_trylock() is identical to <a href="#pthreadmutexlock"><code>pthread_mutex_lock()</code></a>
except that if the mutex object referenced by mutex is currently locked
(by any thread, including the current thread), the call returns immediately
with the errno <code>EBUSY</code>.
<p>
If a signal is delivered to a thread waiting for a mutex, upon return from
the signal handler the thread resumes waiting for the mutex as if it was
not interrupted.
</p>
<li><code>mutex</code>. A reference to the mutex to be locked.</li>
If successful, the <I>pthread_mutex_trylock()</I> function will return zero (<I>OK</I>).
Otherwise, an error number will be returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<p>Note that this function will never return the error EINTR.</p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexunlock">2.9.36 pthread_mutex_unlock</a></H3>
#include <pthread.h>
int pthread_mutex_unlock(pthread_mutex_t *mutex);
The <code>pthread_mutex_unlock()</code> function releases the mutex object referenced
by mutex. The manner in which a mutex is released is dependent upon the
mutex's type attribute. If there are threads blocked on the mutex object
referenced by mutex when <code>pthread_mutex_unlock()</code> is called, resulting in
the mutex becoming available, the scheduling policy is used to determine
which thread shall acquire the mutex. (In the case of <code>PTHREAD_MUTEX_RECURSIVE</code>
mutexes, the mutex becomes available when the count reaches zero and the
calling thread no longer has any locks on this mutex).
</p>
<p>
If a signal is delivered to a thread waiting for a mutex, upon return from
the signal handler the thread resumes waiting for the mutex as if it was
not interrupted.
</p>
If successful, the <I>pthread_mutex_unlock()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<p>Note that this function will never return the error EINTR.</p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadconaddrinit">2.9.37 pthread_condattr_init</a></H3>
#include <pthread.h>
int pthread_condattr_init(pthread_condattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_condattr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadocndattrdestroy">2.9.38 pthread_condattr_destroy</a></H3>
#include <pthread.h>
int pthread_condattr_destroy(pthread_condattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_condattr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondinit">2.9.39 pthread_cond_init</a></H3>
#include <pthread.h>
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_cond_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadconddestroy">2.9.40 pthread_cond_destroy</a></H3>
#include <pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_cond_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondbroadcast">2.9.41 pthread_cond_broadcast</a></H3>
#include <pthread.h>
int pthread_cond_broadcast(pthread_cond_t *cond);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_cond_broadcast()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondsignal">2.9.42 pthread_cond_signal</a></H3>
#include <pthread.h>
int pthread_cond_signal(pthread_cond_t *dond);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_cond_signal()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondwait">2.9.43 pthread_cond_wait</a></H3>
#include <pthread.h>
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
If successful, the <I>pthread_cond_wait()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondtimedwait">2.9.44 pthread_cond_timedwait</a></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <code>pthread_cond_timedwait()</code> function will return
zero (<code>OK</code>). Otherwise, an error number will be
returned to indicate the error:
</p>
<ul>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrinit">2.9.45 pthread_barrierattr_init</a></h3>
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_init(FAR pthread_barrierattr_t *attr);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_init()</code> function will initialize a barrier
attribute object <code>attr</code> with the default value for all of the attributes
defined by the implementation.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>attr</code>. Barrier attributes to be initialized.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (<code>OK</code>) on success or <code>EINVAL</code> if <code>attr</code> is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrdestroy">2.9.46 pthread_barrierattr_destroy</a></h3>
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_destroy(FAR pthread_barrierattr_t *attr);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_destroy()</code> function will destroy a barrier attributes object.
A destroyed attributes object can be reinitialized using <code>pthread_barrierattr_init()</code>;
the results of otherwise referencing the object after it has been destroyed are undefined.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>attr</code>. Barrier attributes to be destroyed.
</li>
</ul>
<p>
<b>Returned Values:</b> 0 (OK) on success or EINVAL if attr is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrsetpshared">2.9.47 pthread_barrierattr_setpshared</a></h3>
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_setpshared(FAR pthread_barrierattr_t *attr, int pshared);
</pre>
<p>
<b>Description:</b>
The process-shared attribute is set to <code>PTHREAD_PROCESS_SHARED</code> to permit
a barrier to be operated upon by any thread that has access to the memory where the
barrier is allocated.
If the process-shared attribute is <code>PTHREAD_PROCESS_PRIVATE</code>, the barrier can
only be operated upon by threads created within the same process as the thread that
initialized the barrier.
If threads of different processes attempt to operate on such a barrier, the behavior is undefined.
The default value of the attribute is <code>PTHREAD_PROCESS_PRIVATE</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>attr</code>. Barrier attributes to be modified.</li>
<li><code>pshared</code>. The new value of the pshared attribute.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if either
<code>attr</code> is invalid or <code>pshared</code> is not one of
<code>PTHREAD_PROCESS_SHARED</code> or <code>PTHREAD_PROCESS_PRIVATE</code>.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrgetpshared">2.9.48 pthread_barrierattr_getpshared</a></h3>
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_getpshared(FAR const pthread_barrierattr_t *attr, FAR int *pshared);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_getpshared()</code> function will obtain the value of the
process-shared attribute from the attributes object referenced by <code>attr</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>attr</code>. Barrier attributes to be queried.</li>
<li><code>pshared</code>. The location to stored the current value of the pshared attribute.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if
either <code>attr</code> or <code>pshared</code> is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierinit">2.9.49 pthread_barrier_init</a></h3>
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_init(FAR pthread_barrier_t *barrier,
FAR const pthread_barrierattr_t *attr, unsigned int count);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_init()</code> function allocates any resources required to
use the barrier referenced by <code>barrier</code> and initialized the barrier with
the attributes referenced by <code>attr</code>.
If <code>attr</code> is NULL, the default barrier attributes will be used.
The results are undefined if <code>pthread_barrier_init()</code> is called when any
thread is blocked on the barrier.
The results are undefined if a barrier is used without first being initialized.
The results are undefined if <code>pthread_barrier_init()</code> is called specifying
an already initialized barrier.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>barrier</code>.
The barrier to be initialized.
</li>
<li>
<code>attr</code>.
Barrier attributes to be used in the initialization.
</li>
<li>
<code>count</code>.
The count to be associated with the barrier.
The count argument specifies the number of threads that must call
<code>pthread_barrier_wait()</code> before any of them successfully return from the call.
The value specified by count must be greater than zero.
</li>
</ul>
<p>
<b>Returned Values:</b>0 (OK) on success or on of the following error numbers:
</p>
<ul>
<li>
<code>EAGAIN</code>.
The system lacks the necessary resources to initialize another barrier.
</li>
<li>
<code>EINVAL</code>.
The barrier reference is invalid, or the values specified by attr are invalid, or
the value specified by count is equal to zero.
</li>
<li>
<code>ENOMEM</code>.
Insufficient memory exists to initialize the barrier.
</li>
<li>
<code>EBUSY</code>.
The implementation has detected an attempt to reinitialize a barrier while it is in use.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierdestroy">2.9.50 pthread_barrier_destroy</a></h3>
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_destroy(FAR pthread_barrier_t *barrier);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_destroy()</code> function destroys the barrier referenced
by <code>barrie</code> and releases any resources used by the barrier.
The effect of subsequent use of the barrier is undefined until the barrier is
reinitialized by another call to <code>pthread_barrier_init()</code>.
The results are undefined if <code>pthread_barrier_destroy()</code> is called when
any thread is blocked on the barrier, or if this function is called with an
uninitialized barrier.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>barrier</code>. The barrier to be destroyed.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or on of the following error numbers:
</p>
<ul>
<li>
<code>EBUSY</code>.
The implementation has detected an attempt to destroy a barrier while it is in use.
</li>
<li>
<code>EINVAL</code>.
The value specified by barrier is invalid.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierwait">2.9.51 pthread_barrier_wait</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_wait(FAR pthread_barrier_t *barrier);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_wait()</code> function synchronizes participating
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
threads at the barrier referenced by <code>barrier</code>.
The calling thread is blocked until the required number of threads have called
<code>pthread_barrier_wait()</code> specifying the same <code>barrier</code>.
When the required number of threads have called <code>pthread_barrier_wait()</code>
specifying the <code>barrier</code>, the constant <code>PTHREAD_BARRIER_SERIAL_THREAD</code>
will be returned to one unspecified thread and zero will be returned to each of
the remaining threads.
At this point, the barrier will be reset to the state it had as a result of the most
recent <code>pthread_barrier_init()</code> function that referenced it.
</p>
<p>
The constant <code>PTHREAD_BARRIER_SERIAL_THREAD</code> is defined in
<code>pthread.h</code> and its value must be distinct from any other value
returned by <code>pthread_barrier_wait()</code>.
</p>
<p>
The results are undefined if this function is called with an uninitialized barrier.
</p>
<p>
If a signal is delivered to a thread blocked on a barrier, upon return from the
signal handler the thread will resume waiting at the barrier if the barrier wait
has not completed.
Otherwise, the thread will continue as normal from the completed barrier wait.
Until the thread in the signal handler returns from it, it is unspecified whether
other threads may proceed past the barrier once they have all reached it.
</p>
<p>
A thread that has blocked on a barrier will not prevent any unblocked thread that
is eligible to use the same processing resources from eventually making forward
progress in its execution.
Eligibility for processing resources will be determined by the scheduling policy.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>barrier</code>. The barrier on which to wait.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if the barrier is not valid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadonce">2.9.52 pthread_once</a></h3>
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_once(FAR pthread_once_t *once_control, CODE void (*init_routine)(void));
</pre>
<p>
<b>Description:</b>
The first call to <code>pthread_once()</code> by any thread with a given
<code>once_control</code>, will call the <code>init_routine()</code> with no arguments.
Subsequent calls to <code>pthread_once()</code> with the same <code>once_control</code> will have no effect.
On return from <code>pthread_once()</code>, <code>init_routine()</code> will have completed.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>once_control</code>.
Determines if <code>init_routine()</code> should be called.
<code>once_control</code> should be declared and initialized as follows:
<ul><pre>pthread_once_t once_control = PTHREAD_ONCE_INIT;
</pre></ul>
<code>PTHREAD_ONCE_INIT</code> is defined in <code>pthread.h</code>.
</li>
<li>
<code>init_routine</code>.
The initialization routine that will be called once.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (OK) on success or EINVAL if either once_control or init_routine are invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadkill">2.9.53 pthread_kill</a></h3>
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <signal.h>
#include <pthread.h>
int pthread_kill(pthread_t thread, int signo)
</pre>
<p>
<b>Description:</b>
The <code>pthread_kill()</code> system call can be used to send any
signal to a thread. See <code>kill()</code> for further information
as this is just a simple wrapper around the <code>kill()</code>
function.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>thread</code>.
The id of the thread to receive the signal. Only positive, non-zero values of <code>tthread</code>t are supported.
</li>
<li>
<code>signo</code>.
The signal number to send. If <code>signo</code> is zero, no signal is sent, but all error checking is performed.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
On success, the signal was sent and zero is returned.
On error one of the following error numbers is returned.
</p>
<ul>
<li>
<code>EINVAL</code>.
An invalid signal was specified.
</li>
<li>
<code>EPERM</code>.
The thread does not have permission to send the signal to the target thread.
</li>
<li>
<code>ESRCH</code>.
No thread could be found corresponding to that specified by the given thread ID.
</li>
<li>
<code>ENOSYS</code>.
Do not support sending signals to process groups.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadsigmask">2.9.54 pthread_sigmask</a></h3>
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <signal.h>
#include <pthread.h>
int pthread_sigmask(int how, FAR const sigset_t *set, FAR sigset_t *oset);
</pre>
<p>
<b>Description:</b>
This function is a simple wrapper around <code>sigprocmask()</code>.
See the <code>sigprocmask()</code> function description for further information.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>how</code>. How the signal mast will be changed:
<ul>
<li>
<code>SIG_BLOCK</code>:
The resulting set is the union of the current set and the signal set pointed to by <code>set</code>.
</li>
<li>
<code>SIG_UNBLOCK</code>:
The resulting set is the intersection of the current set and the complement of the signal set pointed to by <code>set</code>.
</li>
<li>
<code>SIG_SETMASK</code>:
The resulting set is the signal set pointed to by <code>set</code>.
</li>
</ul>
</li>
<li>
<code>set</code>. Location of the new signal mask.
</li>
<li>
<code>oset</code>. Location to store the old signal mask.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Environ"><h2>2.10 Environment Variables</h2></a>
</td>
</tr>
</table>
<p><b>Overview</b>.
NuttX supports environment variables that can be used to control the behavior of programs.
In the spirit of NuttX the environment variable behavior attempts to emulate the behavior of
</p>
<ul>
<li><b>Task environments</b>.
When a new task is created using <a href="#taskcreate">task_create</a>, the environment
of the child task is an inherited, exact copy of the environment of the parent.
However, after child task has been created, subsequent operations by the child task on
its environment does not alter the environment of the parent.
No do operations by the parent effect the child's environment.
The environments start identical but are independent and may diverge.
</li>
<li><b>Thread environments</b>.
When a pthread is created using <a href="#pthreadcreate">pthread_create</a>, the child
thread also inherits that environment of the parent.
However, the child does not receive a copy of the environment but, rather, shares the same
Changes to the environment are visible to all threads with the same parentage.
</li>
</ul>
<p><b>Programming Interfaces</b>.
The following environment variable programming interfaces are provided by Nuttx and are
described in detail in the following paragraphs.
</p>
<ul>
<li><a href="#getenv">2.10.1 <code>getenv</code></a></li>
<li><a href="#putenv">2.10.2 <code>putenv</code></a></li>
<li><a href="#clearenv">2.10.3 <code>clearenv</code></a></li>
<li><a href="#setenv">2.10.4 <code>setenv</code></a></li>
<li><a href="#unsetenv">2.10.5 <code>unsetenv</code></a></li>
</ul>
<p><b>Disabling Environment Variable Support</b>.
All support for environment variables can be disabled by setting <code>CONFIG_DISABLE_ENVIRON</code>
in the board configuration file.
</p>
<h3><a name="getenv">2.10.1 <code>getenv</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
FAR char *getenv(const char *name);
</pre>
<p>
<b>Description:</b>
The <code>getenv()</code> function searches the environment list for a string that
matches the string pointed to by <code>name</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>name</code>.
The name of the variable to find.
</li>
</ul>
<p>
<b>Returned Values:</b>
<h3><a name="putenv">2.10.2 <code>putenv</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
int putenv(char *string);
</pre>
<p>
<b>Description:</b>
The <code>putenv()</code> function adds or changes the value of environment variables.
The argument string is of the form <i>name=value</i>. If name does not already
exist in the environment, then string is added to the environment. If
name does exist, then the value of name in the environment is changed to
value.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>string</code>
name=value string describing the environment setting to add/modify.
</li>
</ul>
<p>
<b>Returned Values:</b>
<h3><a name="clearenv">2.10.3 <code>clearenv</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
int clearenv(void);
</pre>
<p>
<b>Description:</b>
The <code>clearenv()</code> function clears the environment of all name-value pairs
and sets the value of the external variable environ to NULL.
</p>
<p>
<b>Input Parameters:</b>
None
</p>
<p>
<b>Returned Values:</b>
Zero on success.
</p>
<h3><a name="setenv">2.10.4 <code>setenv</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
int setenv(const char *name, const char *value, int overwrite);
</pre>
<p>
<b>Description:</b>
The <code>setenv()</code> function adds the variable <code>name</code> to the environment with the
specified <code>value</code> if the variable <code>name</code> does not exist. If the <code>name</code>
does exist in the environment, then its value is changed to <code>value</code> if <code>overwrite</code>
is non-zero; if <code>overwrite</code> is zero, then the value of <code>name</code> is unaltered.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>name</code>
The name of the variable to change.
</li>
<li>
<code>value</code>
The new value of the variable.
</li>
<li>
<code>value</code>
Replace any existing value if non-zero.
</li>
</ul>
<p>
<b>Returned Values:</b>
Zero on success.
</p>
<h3><a name="unsetenv">2.10.5 <code>unsetenv</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
int unsetenv(const char *name);
</pre>
<p>
<b>Description:</b>
The <code>unsetenv()</code> function deletes the variable <code>name</code> from the environment.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>name</code>
The name of the variable to delete.
</li>
</ul>
<p>
<b>Returned Values:</b>
Zero on success.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="FileSystem"><h2>2.11 File System Interfaces</h2></a>
</td>
</tr>
</table>
<ul>
<li><a href="#FileSystemOverview">2.11.1 NuttX File System Overview</a></li>
<li><a href="#driveroperations">2.11.2 Driver Operations</a></li>
<li><a href="#directoryoperations">2.11.3 Directory Operations</a></li>
<li><a href="#dirunistdops">2.11.4 UNIX Standard Operations</a></li>
<li><a href="#standardio">2.11.5 Standard I/O</a></li>
<li><a href="#stdstrings">2.11.6 Standard String Operations</a></li>
<li><a href="#PipesNFifos">2.11.7 Pipes and FIFOs</a></li>
<li><a href="#fatsupport">2.11.8 FAT File System Support</a></li>
<li><a href="#mmapxip">2.11.9 <code>mmap()</code> and eXecute In Place (XIP)</a></li>
<h3><a name="FileSystemOverview">2.11.1 NuttX File System Overview</a></h3>
<p><b>Overview</b>.
NuttX includes an optional, scalable file system.
This file-system may be omitted altogether; NuttX does not depend on the presence
of any file system.
</p>
<p><b>Pseudo Root File System</b>.
Or, a simple <i>in-memory</i>, <i>pseudo</i> file system can be enabled.
This simple file system can be enabled setting the CONFIG_NFILE_DESCRIPTORS
option to a non-zero value.
This is an <i>in-memory</i> file system because it does not require any
storage medium or block driver support.
Rather, file system contents are generated on-the-fly as referenced via
standard file system operations (open, close, read, write, etc.).
In this sense, the file system is <i>pseudo</i> file system (in the
same sense that the Linux <code>/proc</code> file system is also
Any user supplied data or logic can be accessed via the pseudo-file system.
Built in support is provided for character and block
<a href="NuttxPortingGuide.html#DeviceDrivers">driver</a> <i>nodes</i> in the any
pseudo file system directory.
(By convention, however, all driver nodes should be in the <code>/dev</code>
pseudo file system directory).
</p>
<p><b>Mounted File Systems</b>
The simple in-memory file system can be extended my mounting block
devices that provide access to true file systems backed up via some
mass storage device.
NuttX supports the standard <code>mount()</code> command that allows
a block driver to be bound to a mount-point within the pseudo file system
and to a a file system.
At present, NuttX supports only the VFAT file system.
</p>
<p><b>Comparison to Linux</b>
From a programming perspective, the NuttX file system appears very similar
to a Linux file system.
However, there is a fundamental difference:
The NuttX root file system is a pseudo file system and true file systems may be
mounted in the pseudo file system.
In the typical Linux installation by comparison, the Linux root file system
is a true file system and pseudo file systems may be mounted in the true,
root file system.
The approach selected by NuttX is intended to support greater scalability
from the very tiny platform to the moderate platform.
</p>
<p><b>File System Interfaces</b>.
The NuttX file system simply supports a set of standard, file system APIs
(<code>open()</code>, <code>close()</code>, <code>read()</code>, <code>write</code>, etc.)
and a registration mechanism that allows devices drivers to a associated with <i>nodes</i>
in a file-system-like name space.
</p>
<h3><a name="driveroperations">2.11.2 Driver Operations</a></h3>
<ul>
<li><a href="#drvrfcntlops">2.11.2.1 <code>fcntl.h</code></a></li>
<li><a href="#drvrunistdops">2.11.2.2 <code>unistd.h</code></a></li>
<li><a href="#drvrioctlops">2.11.2.3 <code>sys/ioctl.h</code></a></li>
<li><a href="#drvrpollops">2.11.2.4 <code>poll.h</code></a></li>
<li><a href="#drvselectops">2.11.2.5 <code>sys/select.h</code></a></li>
</ul>
<h4><a name="drvrfcntlops">2.11.2.1 fcntl.h</a></h4>
<ul><pre>
#include <fcntl.h>
int open(const char *path, int oflag, ...);
</pre></ul>
<h4><a name="drvrunistdops">2.11.2.2 unistd.h</a></h4>
int close(int fd);
int dup(int fildes);
int dup2(int fildes1, int fildes2);
off_t lseek(int fd, off_t offset, int whence);
ssize_t read(int fd, void *buf, size_t nbytes);
int unlink(const char *path);
ssize_t write(int fd, const void *buf, size_t nbytes);
<h4><a name="drvrioctlops">2.11.2.3 sys/ioctl.h</a></h4>
int ioctl(int fd, int req, unsigned long arg);
<pre>
#include <poll.h>
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
</pre>
<p>
<b>Description:</b>
<code>poll()</code> waits for one of a set of file descriptors to become ready to
perform I/O. If none of the events requested (and no error) has
occurred for any of the file descriptors, then <code>poll()</code> blocks until
one of the events occurs.
</p>
<p>
<b>Configuration Settings</b>.
In order to use the <code>poll()</code> API, the following must be defined
in your NuttX configuration file:
</p>
<ul>
<li><code>CONFIG_NFILE_DESCRIPTORS</code> Defined to be greater than 0</li>
<li><code>CONFIG_DISABLE_POLL</code> NOT defined</li>
</ul>
<p>
In order to use the select with TCP/IP sockets test, you must also have the following additional things
selected in your NuttX configuration file:
</p>
<ul>
<li><code>CONFIG_NET</code> Defined for general network support</li>
<li><code>CONFIG_NET_TCP</code> Defined for TCP/IP support</li>
<li><code>CONFIG_NSOCKET_DESCRIPTORS</code> Defined to be greater than 0</li>
<li><code>CONFIG_NET_NTCP_READAHEAD_BUFFERS</code> Defined to be greater than zero</li>
</ul>
<p>
In order to for select to work with incoming connections, you must also select:
</p>
<ul>
<li><code>CONFIG_NET_TCPBACKLOG</code>
Incoming connections pend in a backlog until <code>accept()</cod> is called.
The size of the backlog is selected when <code>listen()</code> is called.</li>
</ul>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>fds</code>. List of structures describing file descriptors to be monitored.</li>
<li><code>nfds</code>. The number of entries in the list.</li>
<li><code>timeout</code>. Specifies an upper limit on the time for which <code>poll()</code> will
block in milliseconds. A negative value of <code>timeout</code> means an infinite
timeout.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
On success, the number of structures that have nonzero <code>revents</code> fields.
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
A value of 0 indicates that the call timed out and no file descriptors were ready.
On error, -1 is returned, and <code>errno</code> is set appropriately:
</p>
<ul>
<li><code>EBADF</code>. An invalid file descriptor was given in one of the sets.</li>
<li><code>EFAULT</code>. The fds address is invalid</li>
<li><code>EINTR</code>. A signal occurred before any requested event.</li>
<li><code>EINVAL</code>. The nfds value exceeds a system limit.</li>
<li><code>ENOMEM</code>. There was no space to allocate internal data structures.</li>
<li><code>ENOSYS</code>. One or more of the drivers supporting the file descriptor does not support the poll method.</li>
</ul>
<h4><a name="drvselectops">2.11.2.5 sys/select.h</a></h4>
<h5><a name="select">2.11.2.5.1 select</a></H5>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/select.h>
int select(int nfds, FAR fd_set *readfds, FAR fd_set *writefds,
FAR fd_set *exceptfds, FAR struct timeval *timeout);
</pre>
<p>
<b>Description:</b>
<code>select()</code> allows a program to monitor multiple file descriptors, waiting
until one or more of the file descriptors become "ready" for some class
of I/O operation (e.g., input possible). A file descriptor is
considered ready if it is possible to perform the corresponding I/O
operation (e.g., read(2)) without blocking.
</p>
<p>
<b>NOTE:</b> <a href="#poll"><code>poll()</code></a> is the fundamental API for performing such monitoring
operation under NuttX. <code>select()</code> is provided for compatibility and
is simply a layer of added logic on top of <code>poll()</code>. As such, <code>select()</code>
is more wasteful of resources and <a href="#poll"><code>poll()</code></a> is the recommended API to be
used.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>nfds</code>. the maximum file descriptor number (+1) of any descriptor in any of the three sets.</li>
<li><code>readfds</code>. the set of descriptions to monitor for read-ready events</li>
<li><code>writefds</code>. the set of descriptions to monitor for write-ready events</li>
<li><code>exceptfds</code>. the set of descriptions to monitor for error events</li>
<li><code>timeout</code>. Return at this time if none of these events of interest occur.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<ul>
<li><code>0:</code> Timer expired</li>
<li><code>>0:</code> The number of bits set in the three sets of descriptors</li>
<li><code>-1:</code> An error occurred (<code>errno</code> will be set appropriately,
see <a href="#poll"><code>poll()</code></a>).</li>
</ul>
<h3><a name="directoryoperations">2.11.3 Directory Operations</a></h3>
#include <dirent.h>
int closedir(DIR *dirp);
FAR DIR *opendir(const char *path);
FAR struct dirent *readdir(FAR DIR *dirp);
int readdir_r(FAR DIR *dirp, FAR struct dirent *entry, FAR struct dirent **result);
void rewinddir(FAR DIR *dirp);
void seekdir(FAR DIR *dirp, int loc);
int telldir(FAR DIR *dirp);
<h3><a name="dirunistdops">2.11.4 UNIX Standard Operations</a></h3>
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
#include <unistd.h>
pid_t getpid(void);
void _exit(int status) noreturn_function;
unsigned int sleep(unsigned int seconds);
void usleep(unsigned long usec);
int close(int fd);
int dup(int fd);
int dup2(int fd1, int fd2);
int fsync(int fd);
off_t lseek(int fd, off_t offset, int whence);
ssize_t read(int fd, FAR void *buf, size_t nbytes);
ssize_t write(int fd, FAR const void *buf, size_t nbytes);
int pipe(int filedes[2]);
int chdir(FAR const char *path);
FAR char *getcwd(FAR char *buf, size_t size);
int unlink(FAR const char *pathname);
int rmdir(FAR const char *pathname);
int getopt(int argc, FAR char *const argv[], FAR const char *optstring);
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
<h3><a name="standardio">2.11.5 Standard I/O</a></h3>
<ul><pre>
#include <stdio.h>
int fclose(FILE *stream);
int fflush(FILE *stream);
FILE *fdopen(int fd, const char *type);
int feof(FILE *stream); /* Prototyped but not implemented */
int ferror(FILE *stream); /* Prototyped but not implemented */
int fileno(FAR FILE *stream);
int fgetc(FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
char *fgets(char *s, int n, FILE *stream);
FILE *fopen(const char *path, const char *type);
int fprintf(FILE *stream, const char *format, ...);
int fputc(int c, FILE *stream);
int fputs(const char *s, FILE *stream);
size_t fread(void *ptr, size_t size, size_t n_items, FILE *stream);
int fseek(FILE *stream, long int offset, int whence);
int fsetpos(FILE *stream, fpos_t *pos);
long ftell(FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t n_items, FILE *stream);
char *gets(char *s);
int printf(const char *format, ...);
int puts(const char *s);
int rename(const char *source, const char *target);
int snprintf(FAR char *buf, size_t size, const char *format, ...);
int sprintf(char *dest, const char *format, ...);
int sscanf(const char *buf, const char *fmt, ...);
int ungetc(int c, FILE *stream);
int vprintf(const char *s, va_list ap);
int vfprintf(FILE *stream, const char *s, va_list ap);
int vsnprintf(FAR char *buf, size_t size, const char *format, va_list ap);
int vsscanf(char *buf, const char *s, va_list ap);
int vsprintf(char *buf, const char *s, va_list ap);
#include <sys/stat.h>
int mkdir(FAR const char *pathname, mode_t mode);
int mkfifo(FAR const char *pathname, mode_t mode);
int stat(const char *path, FAR struct stat *buf);
int fstat(int fd, FAR struct stat *buf);
#include <sys/statfs.h>
int statfs(const char *path, struct statfs *buf);
int fstatfs(int fd, struct statfs *buf);
</pre></ul>
<h3><a name="stdstrings">2.11.6 Standard String Operations</a></h3>
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
#include <string.h>
char *strchr(const char *s, int c);
FAR char *strdup(const char *s);
const char *strerror(int);
size_t strlen(const char *);
char *strcat(char *, const char *);
char *strncat(char *, const char *, size_t);
int strcmp(const char *, const char *);
int strncmp(const char *, const char *, size_t);
int strcasecmp(const char *, const char *);
int strncasecmp(const char *, const char *, size_t);
char *strcpy(char *dest, const char *src);
char *strncpy(char *, const char *, size_t);
char *strpbrk(const char *, const char *);
char *strchr(const char *, int);
char *strrchr(const char *, int);
size_t strspn(const char *, const char *);
size_t strcspn(const char *, const char *);
char *strstr(const char *, const char *);
char *strtok(char *, const char *);
char *strtok_r(char *, const char *, char **);
void *memset(void *s, int c, size_t n);
void *memcpy(void *dest, const void *src, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
void *memmove(void *dest, const void *src, size_t count);
# define bzero(s,n) (void)memset(s,0,n)
<h3><a name="PipesNFifos">2.11.7 Pipes and FIFOs</a></h3>
<h3>2.11.7.1 <a name="pipe"><code>pipe</code></a></h3>
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
int pipe(int filedes[2]);
</pre>
<p>
<b>Description:</b>
<ul>
<p>
<code>pipe()</code> creates a pair of file descriptors, pointing to a pipe inode, and
places them in the array pointed to by <code>filedes</code>.
<code>filedes[0]</code> is for reading, <code>filedes[1]</code> is for writing.
</p>
</ul>
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><code>filedes[2]</code>. The user provided array in which to catch the pipe file descriptors.</li>
</ul>
</p>
</p>
<p>
<b>Returned Values:</b>
<ul>
<p>
0 is returned on success; otherwise, -1 is returned with <code>errno</code> set appropriately.
</p>
</ul>
</p>
<h3>2.11.7.2 <a name="mkfifo"><code>mkfifo</code></a></h3>
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
int mkfifo(FAR const char *pathname, mode_t mode);
</pre>
<p>
<b>Description:</b>
<ul>
<p>
<code>mkfifo()</code> makes a FIFO device driver file with name <code>pathname</code>.
Unlike Linux, a NuttX FIFO is not a special file type but simply a device driver instance.
<code>mode</code> specifies the FIFO's permissions (but is ignored in the current implementation).
</p>
<p>
Once the FIFO has been created by <code>mkfifo()</code>, any thread can open it for
reading or writing, in the same way as an ordinary file.
However, it must have been opened from both reading and writing before input or output can be performed.
This FIFO implementation will block all attempts to open a FIFO read-only until at least one thread has opened the FIFO for writing.
</p>
<p>
If all threads that write to the FIFO have closed, subsequent calls to <code>read()</code> on the FIFO will return 0 (end-of-file).
</p>
</ul>
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><code>pathname</code>.
The full path to the FIFO instance to attach to or to create (if not already created).
</li>
<li><code>mode<code>.
Ignored for now
</li>
</ul>
</p>
<p>
<b>Returned Values:</b>
<ul>
<p>
0 is returned on success; otherwise, -1 is returned with <code>errno</code> set appropriately.
</p>
</ul>
</p>
<h3><a name="fatsupport">2.11.8 FAT File System Support</a></h3>
<h3>2.11.8.1 <a name="mkfatfs"><code>mkfatfs</code></a></h3>
int mkfatfs(FAR const char *pathname, FAR struct fat_format_s *fmt);
</pre></ul>
The <code>mkfats()</code> formats a FAT file system image on the block
device specified by <code>pathname</code>
</p>
<p>Assumptions: The caller must assure that the block driver is not mounted and not in
use when this function is called.
The result of formatting a mounted device is indeterminate (but likely not good).
</p>
</ul>
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li>
<code>pathname</code>
The full path to the registered block driver in the file system.
<code>fmt</code>
A reference to an instance of a structure that provides caller-selectable
attributes of the created FAT file system.
<ul>
<pre>
struct fat_format_s
{
patacongo
committed
uint8_t ff_nfats; /* Number of FATs */
uint8_t ff_fattype; /* FAT size: 0 (autoselect), 12, 16, or 32 */
uint8_t ff_clustshift; /* Log2 of sectors per cluster: 0-5, 0xff (autoselect) */
uint8_t ff_volumelabel[11]; /* Volume label */
uint16_t ff_backupboot; /* Sector number of the backup boot sector (0=use default)*/
uint16_t ff_rootdirentries; /* Number of root directory entries */
uint16_t ff_rsvdseccount; /* Reserved sectors */
uint32_t ff_hidsec; /* Count of hidden sectors preceding fat */
uint32_t ff_volumeid; /* FAT volume id */
uint32_t ff_nsectors; /* Number of sectors from device to use: 0: Use all */
</li>
</ul>
</p>
<p>
<b>Returned Values:</b>
<ul>
<p>
Zero (<code>OK</code>) on success;
-1 (<code>ERROR</code>) on failure with <code>errno</code> set appropriately:
<ul>
<li><code>EINVAL</code> -
NULL block driver string, bad number of FATS in <code>fmt</code>,
bad FAT size in <code>fmt</code>, bad cluster size in <code>fmt</code>
</li>
<li><code>ENOENT</code> -
<code>pathname</code> does not refer to anything in the file-system.
</li>
<li><code>ENOTBLK</code> -
<code>pathname</code> does not refer to a block driver
</li>
<li><code>EACCESS</code> -
block driver does not support write or geometry methods
</li>
</ul>
<h3><a name="mmapxip">2.11.9 <code>mmap()</code> and eXecute In Place (XIP)</a></h3>
<p>
NuttX operates in a flat open address space.
Therefore, it generally does not require <code>mmap()</code> functionality.
There is one one exception:
<code>mmap()</code> is the API that is used to support direct access to random
access media under the following very restrictive conditions:
<ol>
<li>
The file-system supports the <code>FIOC_MMAP</code> ioctl command.
Any file system that maps files contiguously on the media should support this
<code>ioctl</code> command.
By comparison, most file system scatter files over the media in non-contiguous
sectors. As of this writing, ROMFS is the only file system that meets this requirement.
</li>
<li>
The underlying block driver supports the <code>BIOC_XIPBASE</code> <code>ioctl</code> command
that maps the underlying media to a randomly accessible address.
At present, only the RAM/ROM disk driver does this.
</li>
</ol>
</p>
<h3><a name="mmap">2.11.9.1 <code>mmap</code></a></h3>
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
<p>
<b>Function Prototype:</b>
</p>
<ul><pre>
#include <sys/mman.h>
int mkfatfs(FAR const char *pathname, FAR struct fat_format_s *fmt);
FAR void *mmap(FAR void *start, size_t length, int prot, int flags, int fd, off_t offset)
</pre></ul>
<p>
<b>Description:</b>
<ul>
Provides minimal <code>mmap()</code> as needed to support eXecute In Place (XIP)
operation (as described above).
</ul>
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li>
<code>start</code>
A hint at where to map the memory -- ignored.
The address of the underlying media is fixed and cannot be re-mapped without MMU support.
</li>
<li>
<code>length</code>
The length of the mapping -- ignored.
The entire underlying media is always accessible.
</li>
<li>
<code>prot</code>
See the <code>PROT_*</code> definitions in <code>sys/mman.h</code>.
<ul>
<li>
<code>PROT_NONE</code> - Will cause an error.
</li>
<li>
<code>PROT_READ</code> - <code>PROT_WRITE</code> and <code>PROT_EXEC</code> also assumed.
</li>
<li>
<code>PROT_WRITE</code> - <code>PROT_READ</code> and <code>PROT_EXEC</code> also assumed.
</li>
<li>
<code>PROT_EXEC</code> - <code>PROT_READ</code> and <code>PROT_WRITE</code> also assumed.
</li>
</ul>
</li>
<li>
<code>flags</code>
See the <code>MAP_*</code> definitions in <code>sys/mman.h</code>.
<ul>
<li>
<code>MAP_SHARED</code> - Required
</li>
<li>
<code>MAP_PRIVATE</code> - Will cause an error
</li>
<li>
<code>MAP_FIXED</code> - Will cause an error
</li>
<li>
<code>MAP_FILE</code> - Ignored
</li>
<li>
<code>MAP_ANONYMOUS</code> - Will cause an error
</li>
<li>
<code>MAP_ANON</code> - Will cause an error
</li>
<li>
<code>MAP_GROWSDOWN</code> - Ignored
</li>
<li>
<code>MAP_DENYWRITE</code> - Will cause an error
</li>
<li>
<code>MAP_EXECUTABLE</code> - Ignored
</li>
<li>
<code>MAP_LOCKED</code> - Ignored
</li>
<li>
<code>MAP_NORESERVE</code> - Ignored
</li>
<li>
<code>MAP_POPULATE</code> - Ignored
</li>
<li>
<code>AP_NONBLOCK</code> - Ignored
</li>
</ul>
</li>
<li>
<code>fd</code>
file descriptor of the backing file -- required.
</li>
<li>
<code>offset</code>
The offset into the file to map.
</li>
</ul>
</p>
<p>
<b>Returned Values:</b>
<ul>
<p>
On success, <code>mmap()</code> returns a pointer to the mapped area.
On error, the value <code>MAP_FAILED</code> is returned, and <code>errno</code> is set appropriately.
<ul>
<li><code>ENOSYS</code> -
Returned if any of the unsupported <code>mmap()</code> features are attempted.
</li>
<li><code>EBADF</code> -
<code>fd</code> is not a valid file descriptor.
</li>
<li><code>EINVAL</code> -
Length is 0. flags contained neither <code>MAP_PRIVATE</code> or <code>MAP_SHARED</code>, or
contained both of these values.
</li>
<li><code>ENODEV</code> -
The underlying file-system of the specified file does not support memory mapping.
</li>
</ul>
</p>
</ul>
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Network"><h2>2.12 Network Interfaces</h2></a>
</td>
</tr>
</table>
<p>NuttX includes a simple interface layer based on uIP (see <a href="http://www.sics.se/~adam/uip/index.php/Main_Page">http://www.sics.se</a>).
NuttX supports subset of a standard socket interface to uIP.
These network feature can be enabled by settings in the architecture
<a href="NuttxPortingGuide.html#apndxconfigs">configuration file</a>.
Those socket APIs are discussed in the following paragraphs.</p>
<ul>
<li>
</li>
<li><a href="#socket">2.12.1 socket</a></li>
<li><a href="#bind">2.12.2 bind</a></li>
<li><a href="#connect">2.12.3 connect</a></li>
<li><a href="#listen">2.12.4 listen</a></li>
<li><a href="#accept">2.12.5 accept</a></li>
<li><a href="#send">2.12.6 send</a></li>
<li><a href="#sendto">2.12.7 sendto</a></li>
<li><a href="#recv">2.12.8 recv</a></li>
<li><a href="#recvfrom">2.12.9 recvfrom</a></li>
<li><a href="#setsockopt">2.12.10 setsockopt</a></li>
<li><a href="#getsockopt">2.12.11 getsockopt</a></li>
</ul>
<h3><a name="socket">2.12.1 <code>socket</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
int socket(int domain, int type, int protocol);
</pre>
<p>
<b>Description:</b>
socket() creates an endpoint for communication and returns a descriptor.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>domain</code>: (see sys/socket.h)</li>
<li><code>type</code>: (see sys/socket.h)</li>
<li><code>protocol</code>: (see sys/socket.h)</li>
</ul>
<p>
<b>Returned Values:</b>
0 on success; -1 on error with <a href="#ErrnoAccess"><code>errno</code></a> set appropriately:
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
</p>
<ul>
<li><code>EACCES</code>.
Permission to create a socket of the specified type and/or protocol is denied.</li>
<li><code>EAFNOSUPPORT</code>.
The implementation does not support the specified address family.</li>
<li><code>EINVAL</code>.
Unknown protocol, or protocol family not available.</li>
<li><code>EMFILE</code>.
Process file table overflow.</li>
<li><code>ENFILE</code>
The system limit on the total number of open files has been reached.</li>
<li><code>ENOBUFS</code> or <code>ENOMEM</code>.
Insufficient memory is available. The socket cannot be created until sufficient resources are freed.</li>
<li><code>EPROTONOSUPPORT</code>.
The protocol type or the specified protocol is not supported within this domain.</li>
</ul>
<h3><a name="bind">2.12.2 <code>bind</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
</pre>
<p>
<b>Description:</b>
<code>bind()</code> gives the socket sockfd the local address <code>addr</code>.
<code>addr</code> is <code>addrlen</code> bytes long. Traditionally, this is called
"assigning a name to a socket." When a socket is created with <code>socket()</code>,
it exists in a name space (address family) but has no name assigned.
<p>
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>sockfd</code>: Socket descriptor from socket.</li>
<li><code>addr</code>: Socket local address.</li>
<li><code>addrlen</code>: Length of <code>addr</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
0 on success; -1 on error with <a href="#ErrnoAccess"><code>errno</code></a> set appropriately:
</p>
<ul>
<li><code>EACCES</code>
The address is protected, and the user is not the superuser.</li>
<li><code>EADDRINUSE</code>
The given address is already in use.</li>
<li><code>EBADF</code>
<code>sockfd</code> is not a valid descriptor.</li>
<li><code>EINVAL</code>
The socket is already bound to an address.</li>
<li><code>ENOTSOCK</code>
<code>sockfd</code> is a descriptor for a file, not a socket.</li>
</ul>
<h3><a name="connect">2.12.3 <code>connect</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
</pre>
<p>
<b>Description:</b>
<code>connect()</code> connects the socket referred to by the file descriptor
<code>sockfd</code> to the address specified by <code>addr</code>.
The <code>addrlen</code> argument specifies the size of <code>addr</code>.
The format of the address in <code>addr</code> is determined by the address space
of the socket sockfd.
If the socket sockfd is of type SOCK_DGRAM then <code>addr</code> is the address
to which datagrams are sent by default, and the only address from which
datagrams are received. If the socket is of type SOCK_STREAM or
SOCK_SEQPACKET, this call attempts to make a connection to the socket
that is bound to the address specified by <code>addr</code>.
Generally, connection-based protocol sockets may successfully <code>connect()</code>
only once; connectionless protocol sockets may use <code>connect()</code> multiple
times to change their association. Connectionless sockets may dissolve
the association by connecting to an address with the sa_family member of
sockaddr set to AF_UNSPEC.
<p>
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>sockfd</code>: Socket descriptor returned by <code>socket()</code></li>
<li><code>addr</code>: Server address (form depends on type of socket)</li>
<li><code>addrlen</code>: Length of actual <code>addr</code></li>
</ul>
<p>
<b>Returned Values:</b>
0 on success; -1 on error with <a href="#ErrnoAccess"><code>errno</code></a> set appropriately:
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
</p>
<li><code>EACCES</code> or </code>EPERM</code>:
The user tried to connect to a broadcast address without having the
socket broadcast flag enabled or the connection request failed
because of a local firewall rule.</li>
<li><code>EADDRINUSE</code>
Local address is already in use.</li>
<li><code>EAFNOSUPPORT</code>
The passed address didn't have the correct address family in its
sa_family field.</li>
<li><code>EAGAIN</code>
No more free local ports or insufficient entries in the routing
cache. For PF_INET.</li>
<li><code>EALREADY</code>
The socket is non-blocking and a previous connection attempt has
not yet been completed.</li>
<li><code>EBADF</code>
The file descriptor is not a valid index in the descriptor table.</li>
<li><code>ECONNREFUSED</code>
No one listening on the remote address.</li>
<li><code>EFAULT</code>
The socket structure address is outside the user's address space.</li>
<li><code>EINPROGRESS</code>
The socket is non-blocking and the connection cannot be completed
immediately.</li>
<li><code>EINTR</code>
The system call was interrupted by a signal that was caught.</li>
<li><code>EISCONN</code>
The socket is already connected.</li>
<li><code>ENETUNREACH</code>
Network is unreachable.</li>
<li><code>ENOTSOCK</code>
The file descriptor is not associated with a socket.</li>
<li><code>ETIMEDOUT</code>
Timeout while attempting connection. The server may be too busy
to accept new connections.</li>
</ul>
<h3><a name="listen">2.12.4 listen</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
int listen(int sockfd, int backlog);
</pre>
<p>
<b>Description:</b>
To accept connections, a socket is first created with <code>socket()</code>, a
willingness to accept incoming connections and a queue limit for incoming
connections are specified with <code>listen()</code>, and then the connections are
accepted with <code>accept()</code>. The <code>listen()</coe> call applies only to sockets of
type <code>SOCK_STREAM</code> or <code>SOCK_SEQPACKET</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of the bound socket.</li>
<li><code>backlog</code>: The maximum length the queue of pending connections may grow.
If a connection request arrives with the queue full, the client may receive an error
with an indication of ECONNREFUSED or, if the underlying protocol supports retransmission,
the request may be ignored so that retries succeed.</li>
</ul>
<p>
<b>Returned Values:</b>
On success, zero is returned. On error, -1 is returned, and
<a href="#ErrnoAccess"><code>errno</code></a> is set appropriately.
</p>
<ul>
<li><code>EADDRINUSE</code>: Another socket is already listening on the same port.</li>
<li><code>EBADF</code>: The argument <code>sockfd</code> is not a valid descriptor.</li>
<li><code>ENOTSOCK</code>: The argument <code>sockfd</code> is not a socket.</li>
<li><code>EOPNOTSUPP</code>: The socket is not of a type that supports the listen operation.</li>
</ul>
<h3><a name="accept">2.12.5 accept</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
</pre>
<p>
<b>Description:</b>
The <code>accept()</code> function is used with connection-based socket types
(<code>SOCK_STREAM</code>, <code>SOCK_SEQPACKET</code> and <code>SOCK_RDM</code>).
It extracts the first connection request on the queue of pending connections,
creates a new connected socket with most of the same properties as <code>sockfd</code>,
and allocates a new socket descriptor for the socket, which is returned. The
newly created socket is no longer in the listening state. The original
socket <code>sockfd</code> is unaffected by this call. Per file descriptor flags
are not inherited across an accept.
</p>
<p>
The <code>sockfd</code> argument is a socket descriptor that has been created with
<code>socket()</code>, bound to a local address with <code>bind()</code>, and is listening for
connections after a call to <code>listen()</code>.
</p>
<p>
On return, the <code>addr</code> structure is filled in with the address of the
connecting entity. The <code>addrlen</code> argument initially contains the size
of the structure pointed to by <code>addr</code>; on return it will contain the
actual length of the address returned.
</p>
<p>
If no pending connections are present on the queue, and the socket is
not marked as non-blocking, accept blocks the caller until a connection
is present. If the socket is marked non-blocking and no pending
connections are present on the queue, accept returns <code>EAGAIN</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of the listening socket.</li>
<li><code>addr</code>: Receives the address of the connecting client.</li>
<li><code>addrlen</code>: Input: allocated size of <code>addr</code>, Return: returned size of <code>addr</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
Returns -1 on error. If it succeeds, it returns a non-negative integer
that is a descriptor for the accepted socket.
</p>
<ul>
<li><code>EAGAIN</code> or <code>EWOULDBLOCK</code>:
The socket is marked non-blocking and no connections are present to be accepted.</li>
<li><code>EBADF</code>:
The descriptor is invalid.</li>
<li><code>ENOTSOCK</code>:
The descriptor references a file, not a socket.</li>
<li><code>EOPNOTSUPP</code>:
The referenced socket is not of type <code>SOCK_STREAM</code>.</li>
<li><code>EINTR</code>:
The system call was interrupted by a signal that was caught before a valid connection arrived.</li>
<li><code>ECONNABORTED</code>:
A connection has been aborted.</li>
<li><code>EINVAL</code>:
Socket is not listening for connections.</li>
<li><code>EMFILE</code>:
The per-process limit of open file descriptors has been reached.</li>
<li><code>ENFILE</code>:
The system maximum for file descriptors has been reached.</li>
<li><code>EFAULT</code>:
The addr parameter is not in a writable part of the user address space.</li>
<li><code>ENOBUFS</code> or <code>ENOMEM</code>:
Not enough free memory.</li>
<li><code>EPROTO</code>:
Protocol error.</li>
<li><code>EPERM</code>:
Firewall rules forbid connection.</li>
</ul>
<h3><a name="send">2.12.6 <code>send</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
ssize_t send(int sockfd, const void *buf, size_t len, int flags);
</pre>
<p>
<b>Description:</b>
The <code>send()</code> call may be used only when the socket is in a connected state
(so that the intended recipient is known).
The only difference between <code>send()</code> and <code>write()</code> is the
presence of <code>flags</code>.
With <code>zero</code> flags parameter, <code>send()</code> is equivalent to
<code>write()</code>. Also, <code>send(s,buf,len,flags)</code> is
equivalent to <code>sendto(s,buf,len,flags,NULL,0)</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of socket
<li><code>buf</code>: Data to send
<li><code>len</code>: Length of data to send
<li><code>flags</code>: Send flags
</ul>
<p>
<b>Returned Values:</b>
See <a href="#sendto"><code>sendto()</code></a>.
</p>
<h3><a name="sendto">2.12.7 <code>sendto</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen);
</pre>
<p>
<b>Description:</b>
If <code>sendto()</code> is used on a connection-mode (SOCK_STREAM, SOCK_SEQPACKET)
socket, the parameters to and tolen are ignored (and the error EISCONN
may be returned when they are not NULL and 0), and the error ENOTCONN is
returned when the socket was not actually connected.
<p>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of socket
<li><code>buf</code>: Data to send
<li><code>len</code>: Length of data to send
<li><code>flags</code>: Send flags
<li><code>to</code>: Address of recipient
<li><code>tolen</code>: The length of the address structure
</ul>
<p>
<b>Returned Values:</b>
On success, returns the number of characters sent. On error, -1 is returned,
and <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately:
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
</p>
<ul>
<li><code>EAGAIN</code> or <code>EWOULDBLOCK</code>.
The socket is marked non-blocking and the requested operation would block.
<li><code>EBADF</code>.
An invalid descriptor was specified.
<li><code>ECONNRESET</code>.
Connection reset by peer.
<li><code>EDESTADDRREQ</code>.
The socket is not connection-mode, and no peer address is set.
<li><code>EFAULT</code>.
An invalid user space address was specified for a parameter.
<li><code>EINTR</code>.
A signal occurred before any data was transmitted.
<li><code>EINVAL</code>.
Invalid argument passed.
<li><code>EISCONN</code>.
The connection-mode socket was connected already but a recipient
was specified. (Now either this error is returned, or the recipient
specification is ignored.)
<li><code>EMSGSIZE</code>.
The socket type requires that message be sent atomically, and the
size of the message to be sent made this impossible.
<li><code>ENOBUFS</code>.
The output queue for a network interface was full. This generally
indicates that the interface has stopped sending, but may be
caused by transient congestion.
<li><code>ENOMEM</code>.
No memory available.
<li><code>ENOTCONN</code>.
The socket is not connected, and no target has been given.
<li><code>ENOTSOCK</code>.
The argument s is not a socket.
<li><code>EOPNOTSUPP</code>.
Some bit in the flags argument is inappropriate for the socket type.
<li><code>EPIPE</code>.
The local end has been shut down on a connection oriented socket.
In this case the process will also receive a SIGPIPE unless
MSG_NOSIGNAL is set.
</ul>
<h3><a name="recv">2.12.8 <code>recv</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
ssize_t recv(int sockfd, void *buf, size_t len, int flags);
</pre>
<p>
<b>Description:</b>
The <code>recv()</code> call is identical to
<a href="#recvfrom"><code>recvfrom()</code></a> with a NULL
<code>from</code> parameter.
<p>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
</li>
<li>sockfd</code>: Socket descriptor of socket </li>
<li>buf</code>: Buffer to receive data </li>
<li>len</code>: Length of buffer </li>
<li>flags</code>: Receive flags </li>
</ul>
<p>
<b>Returned Values:</b>
see <a href="#recvfrom"><code>recvfrom()</code></a>.
Zero on success.
</p>
<h3><a name="recvfrom">2.12.9 <code>recvfrom</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen);
</pre>
<p>
<b>Description:</b>
<code>recvfrom()</code> receives messages from a socket, and may be used to receive
data on a socket whether or not it is connection-oriented.
</p>
<p>
If <code>from</code> is not NULL, and the underlying protocol provides the source
address, this source address is filled in. The argument <code>fromlen</code>
initialized to the size of the buffer associated with <code>from</code>, and modified
on return to indicate the actual size of the address stored there.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of socket.</li>
<li><code>buf</code>: Buffer to receive data.</li>
<li><code>len</code>: Length of buffer.</li>
<li><code>flags</code>: Receive flags.</li>
<li><code>from</code>: Address of source.</li>
<li><code>fromlen</code>: The length of the address structure.</li>
</ul>
<p>
<b>Returned Values:</b>
On success, returns the number of characters sent.
On error, -1 is returned, and <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately:
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
</p>
<ul>
<li><code>EAGAIN</code>.
The socket is marked non-blocking and the receive operation would block,
or a receive timeout had been set and the timeout expired before data
was received.
<li><code>EBADF</code>.
The argument <code>sockfd</code> is an invalid descriptor.
<li><code>ECONNREFUSED</code>.
A remote host refused to allow the network connection (typically because
it is not running the requested service).
<li><code>EFAULT</code>.
The receive buffer pointer(s) point outside the process's address space.
<li><code>EINTR</code>.
The receive was interrupted by delivery of a signal before any data were
available.
<li><code>EINVAL</code>.
Invalid argument passed.
<li><code>ENOMEM</code>.
Could not allocate memory.
<li><code>ENOTCONN</code>.
The socket is associated with a connection-oriented protocol and has
not been connected.
<li><code>ENOTSOCK</code>.
The argument <code>sockfd</code> does not refer to a socket.
</ul>
<h3><a name="setsockopt">2.12.10 <code>setsockopt</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
int setsockopt(int sockfd, int level, int option,
const void *value, socklen_t value_len);
</pre>
<p>
<b>Description:</b>
<code>setsockopt()</code> sets the option specified by the <code>option</code> argument,
at the protocol level specified by the <code>level</code> argument, to the value
pointed to by the <code>value</code> argument for the socket associated with the
file descriptor specified by the <code>sockfd</code> argument.
</p>
<p>
The <code>level</code> argument specifies the protocol level of the option. To set
options at the socket level, specify the level argument as SOL_SOCKET.
</p>
<p>
See <code>sys/socket.h</code> for a complete list of values for the <code>option</code> argument.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of socket
<li><code>level</code>: Protocol level to set the option
<li><code>option</code>: identifies the option to set
<li><code>value</code>: Points to the argument value
<li><code>value_len</code>: The length of the argument value
</ul>
<p>
<b>Returned Values:</b>
On success, returns the number of characters sent.
On error, -1 is returned, and <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately:
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
</p>
<ul>
<li><code>BADF</code>.
The <code>sockfd</code> argument is not a valid socket descriptor.
<li><code>DOM</code>.
The send and receive timeout values are too big to fit into the
timeout fields in the socket structure.
<li><code>INVAL</code>.
The specified option is invalid at the specified socket <code>level</code> or the
socket has been shut down.
<li><code>ISCONN</code>.
The socket is already connected, and a specified option cannot be set
while the socket is connected.
<li><code>NOPROTOOPT</code>.
The <code>option</code> is not supported by the protocol.
<li><code>NOTSOCK</code>.
The <code>sockfd</code> argument does not refer to a socket.
<li><code>NOMEM</code>.
There was insufficient memory available for the operation to complete.
<li><code>NOBUFS</code>.
Insufficient resources are available in the system to complete the call.
</ul>
<h3><a name="getsockopt">2.12.11 <code>getsockopt</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
int getsockopt(int sockfd, int level, int option,
void *value, socklen_t *value_len);
</pre>
<p>
<b>Description:</b>
<code>getsockopt()</code> retrieve those value for the option specified by the
<code>option</code> argument for the socket specified by the <code>sockfd</code> argument. If
the size of the option value is greater than <code>value_len</code>, the value
stored in the object pointed to by the <code>value</code> argument will be silently
truncated. Otherwise, the length pointed to by the <code>value_len</code> argument
will be modified to indicate the actual length of the<code>value</code>.
</p>
<p>
The <code>level</code> argument specifies the protocol level of the option. To
retrieve options at the socket level, specify the level argument as
SOL_SOCKET.
</p>
<p>
See <code>sys/socket.h</code>for a complete list of values for the <code>option</code> argument.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd Socket descriptor of socket
<li><code>level Protocol level to set the option
<li><code>option identifies the option to get
<li><code>value Points to the argument value
<li><code>value_len The length of the argument value
</ul>
<p>
<b>Returned Values:</b>
On success, returns the number of characters sent.
On error, -1 is returned, and <a href="#ErrnoAccess"><code>errno</code></a> is set appropriately:
</p>
<ul>
<li><code>BADF</code>.
The <code>sockfd</code> argument is not a valid socket descriptor.</li>
<li><code>INVAL</code>.
The specified option is invalid at the specified socket <code>level</code> or the
socket has been shutdown.</li>
<li><code>NOPROTOOPT</code>.
The <code>option</code> is not supported by the protocol.</li>
<li><code>NOTSOCK</code>.
The <code>sockfd</code> argument does not refer to a socket.</li>
<li><code>NOBUFS
Insufficient resources are available in the system to complete the call.</li>
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="Data_Structures"><h1>3.0 OS Data Structures</h1></a>
</td>
</tr>
</table>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="ScalarType"><h2>3.1 Scalar Types</h2></a>
</td>
</tr>
</table>
Many of the types used to communicate with NuttX are simple
scalar types. These types are used to provide architecture independence
of the OS from the application. The scalar types used at the NuttX
<ul>
<li>pid_t
<li>size_t
<li>sigset_t
<li>time_t
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="HiddenStructures"><h2>3.2 Hidden Interface Structures</h2></a>
</td>
</tr>
</table>
Several of the types used to interface with NuttX are
structures that are intended to be hidden from the application.
From the standpoint of the application, these structures (and
structure pointers) should be treated as simple handles to reference
OS resources. These hidden structures include:
<ul>
<li>_TCB
<li>mqd_t
<li>sem_t
<li>WDOG_ID
<li>pthread_key_t
</ul>
<p>
In order to maintain portability, applications should not reference
specific elements within these hidden structures. These hidden
structures will not be described further in this user's manual.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="ErrnoAccess"><h2>3.3 Access to the <code>errno</code> Variable</h2></a>
</td>
</tr>
</table>
A pointer to the thread-specific <code>errno</code> value is available through a
function call:
</p>
#define errno *get_errno_ptr()
int *get_errno_ptr( void )</pre>
<b>Description</b>:
<code>get_errno_ptr()</code> returns a pointer to the thread-specific <code>errno</code> value.
Note that the symbol <code>errno</code> is defined to be <code>get_errno_ptr()</code> so that the usual
access by referencing the symbol <code>errno</code> will work as expected.
</p>
There is a unique, private <code>errno</code> value for each NuttX task.
However, the implementation of <code>errno</code> differs somewhat from the use of
<code>errno</code> in most multi-threaded process environments:
In NuttX, each pthread will also have its own private copy of <code>errno</code> and the
<code>errno</code> will not be shared between pthreads.
This is, perhaps, non-standard but promotes better thread independence.
<p>
<b>Input Parameters</b>: None
<p>
<b>Returned Values</b>:
<p>
<ul>
<li>A pointer to the thread-specific <code>errno</code> value.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="UserStructures"><h2>3.4 User Interface Structures</h2></a>
</td>
</tr>
</table>
main_t defines the type of a task entry point. main_t is declared
in sys/types.h as:
This structure is used to pass scheduling priorities to and from
NuttX;
NuttX and a user application:
struct timespec
{
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */
};
between NuttX and a MoBY application:
struct mq_attr {
size_t mq_maxmsg; /* Max number of messages in queue */
size_t mq_msgsize; /* Max message size */
unsigned mq_flags; /* Queue flags */
size_t mq_curmsgs; /* Number of messages currently in queue */
};
The following structure defines the action to take for given signal:
struct sigaction
{
union
{
void (*_sa_handler)(int);
void (*_sa_sigaction)(int, siginfo_t *, void *);
} sa_u;
sigset_t sa_mask;
int sa_flags;
};
#define sa_handler sa_u._sa_handler
#define sa_sigaction sa_u._sa_sigaction
The following types is used to pass parameters to/from signal
handlers:
typedef struct siginfo
{
int si_signo;
int si_code;
union sigval si_value;
} siginfo_t;
This defines the type of the struct siginfo si_value field and
is used to pass parameters with signals.
union sigval
{
int sival_int;
void *sival_ptr;
};
The following is used to attach a signal to a message queue to
notify a task when a message is available on a queue.
struct sigevent
{
int sigev_signo;
union sigval sigev_value;
int sigev_notify;
};
<H3>3.4.9 Watchdog Data Types</H3>
<p>
When a watchdog expires, the callback function with this
type is called:
</p>
<pre>
typedef void (*wdentry_t)(int argc, ...);
</pre>
<p>
patacongo
committed
Where argc is the number of uint32_t type arguments that follow.
patacongo
committed
The arguments are passed as uint32_t values.
For systems where the sizeof(pointer) < sizeof(uint32_t), the
following union defines the alignment of the pointer within the
patacongo
committed
uint32_t. For example, the SDCC MCS51 general pointer is
24-bits, but uint32_t is 32-bits (of course).
</p>
<pre>
union wdparm_u
{
void *pvarg;
patacongo
committed
uint32_t *dwarg;
};
typedef union wdparm_u wdparm_t;
</pre>
<p>
patacongo
committed
For most 32-bit systems, pointers and uint32_t are the same size
For systems where sizeof(pointer) > sizeof(uint32_t), we will
have to do some redesign.
</p>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="index"><h1>Index</h1></a>
</td>
</tr>
</table>
<li><a href="#accept">accept</a></li>
<li><a href="#mmapxip">BIOC_XIPBASE</a></li>
<li><a href="#dirunistdops">chdir</a></li>
<li><a href="#clockgetres">clock_getres</a></li>
<li><a href="#clockgettime">clock_gettime</a></li>
<li><a href="#ClocksNTimers">Clocks</a></li>
<li><a href="#clocksettime">clock_settime</a></li>
<li><a href="#drvrunistdops">close</a></li>
<li><a href="#dirdirentops">closedir</a></li>
<li><a href="#Data_Structures">Data structures</a></li>
<li><a href="#directoryoperations">Directory operations</a></li>
<li><a href="#driveroperations">Driver operations</a></li>
<li><a href="#drvrunistdops">dup</a></li>
<li><a href="#drvrunistdops">dup2</a></li>
<li><a href="#mmapxip">eXecute In Place (XIP)</a></li>
<li><a href="#fatsupport">FAT File System Support</a></li>
<li><a href="#standardio">fclose</a></li>
<li><a href="#standardio">fdopen</a></li>
<li><a href="#standardio">feof</a></li>
<li><a href="#standardio">ferror</a></li>
<li><a href="#FileSystem">File system, interfaces</a></li>
<li><a href="#FileSystemOverview">File system, overview</a></li>
<li><a href="#standardio">fflush</a></li>
<li><a href="#standardio">fgetc</a></li>
<li><a href="#standardio">fgetpos</a></li>
<li><a href="#standardio">fgets</a></li>
<li><a href="#mmapxip">FIOC_MMAP</a></li>
<li><a href="#standardio">fopen</a></li>
<li><a href="#standardio">fprintf</a></li>
<li><a href="#standardio">fputc</a></li>
<li><a href="#standardio">fputs</a></li>
<li><a href="#standardio">fread</a></li>
<li><a href="#standardio">fseek</a></li>
<li><a href="#standardio">fsetpos</a></li>
<li><a href="#standardio">ftell</a></li>
<li><a href="#standardio">fwrite</a></li>
<li><a href="#dirunistdops">getcwd</a></li>
<li><a href="#standardio">gets</a></li>
<li><a href="#gmtimer">gmtime_r</a></li>
<li><a href="#drvrioctlops">ioctl</a></li>
<li><a href="#listen">listen</a></li>
<li><a href="#localtimer">localtime_r</a></li>
<li><a href="#drvrunistdops">lseek</a></li>
<li><a href="#standardio">mkdir</a></li>
<li><a href="#mktime">mktime</a></li>
<li><a href="#mqclose">mq_close</a></li>
<li><a href="#mqgetattr">mq_getattr</a></li>
<li><a href="#mqnotify">mq_notify</a></li>
<li><a href="#mqopen">mq_open</a></li>
<li><a href="#mqreceive">mq_receive</a></li>
<li><a href="#mqsend">mq_send</a></li>
<li><a href="#mqsetattr">mq_setattr</a></li>
<li><a href="#mqtimedreceive">mq_timedreceive</a></li>
<li><a href="#mqtimedsend">mq_timedsend</a></li>
<li><a href="#drvrfcntlops">open</a></li>
<li><a href="#dirdirentops">opendir</a></li>
</td>
<td valign="top" width="33%">
<li><a href="#poll">poll</a></li>
<li><a href="#drvrpollops">poll.h</a></li>
<li><a href="#standardio">printf</a></li>
<li><a href="#pthreadattrdestroy">pthread_attr_destroy</a></li>
<li><a href="#pthreadattrgetinheritsched">pthread_attr_getinheritsched</a></li>
<li><a href="#pthreadattrgetschedparam">pthread_attr_getschedparam</a></li>
<li><a href="#pthreadattrgetschedpolicy">pthread_attr_getschedpolicy</a></li>
<li><a href="#pthreadattrgetstacksize">pthread_attr_getstacksize</a></li>
<li><a href="#pthreadattrinit">pthread_attr_init</a></li>
<li><a href="#pthreadattrsetinheritsched">pthread_attr_setinheritsched</a></li>
<li><a href="#pthreadattrsetschedparam">pthread_attr_setschedparam</a></li>
<li><a href="#pthreadattrsetschedpolity">pthread_attr_setschedpolicy</a></li>
<li><a href="#pthreadattrsetstacksize">pthread_attr_setstacksize</a></li>
<li><a href="#pthreadbarrierattrinit">pthread_barrierattr_init</a></li>
<li><a href="#pthreadbarrierattrdestroy">pthread_barrierattr_destroy</a></li>
<li><a href="#pthreadbarrierattrgetpshared">pthread_barrierattr_getpshared</a></li>
<li><a href="#pthreadbarrierattrsetpshared">pthread_barrierattr_setpshared</a></li>
<li><a href="#pthreadbarrierdestroy">pthread_barrier_destroy</a></li>
<li><a href="#pthreadbarrierinit">pthread_barrier_init</a></li>
<li><a href="#pthreadbarrierwait">pthread_barrier_wait</a></li>
<li><a href="#pthreadcancel">pthread_cancel</a></li>
<li><a href="#pthreadconaddrinit">pthread_condattr_init</a></li>
<li><a href="#pthreadcondbroadcast">pthread_cond_broadcast</a></li>
<li><a href="#pthreadconddestroy">pthread_cond_destroy</a></li>
<li><a href="#pthreadcondinit">pthread_cond_init</a></li>
<li><a href="#pthreadcondsignal">pthread_cond_signal</a></li>
<li><a href="#pthreadcondtimedwait">pthread_cond_timedwait</a></li>
<li><a href="#pthreadcondwait">pthread_cond_wait</a></li>
<li><a href="#pthreadcreate">pthread_create</a></li>
<li><a href="#pthreaddetach">pthread_detach</a></li>
<li><a href="#pthreadexit">pthread_exit</a></li>
<li><a href="#pthreadgetschedparam">pthread_getschedparam</a></li>
<li><a href="#pthreadgetspecific">pthread_getspecific</a></li>
<li><a href="#Pthread"><i>pthreads</i></a> share some resources.
<li><a href="#pthreadjoin">pthread_join</a></li>
<li><a href="#pthreadkeycreate">pthread_key_create</a></li>
<li><a href="#pthreadkeydelete">pthread_key_delete</a></li>
<li><a href="#pthreadmutexattrdestroy">pthread_mutexattr_destroy</a></li>
<li><a href="#pthreadmutexattrgetpshared">pthread_mutexattr_getpshared</a></li>
<li><a href="#pthreadmutexattrgettype">pthread_mutexattr_gettype</a></li>
<li><a href="#pthreadmutexattrinit">pthread_mutexattr_init</a></li>
<li><a href="#pthreadmutexattrsetpshared">pthread_mutexattr_setpshared</a></li>
<li><a href="#pthreadmutexattrsettype">pthread_mutexattr_settype</a></li>
<li><a href="#pthreadmutexdestrory">pthread_mutex_destroy</a></li>
<li><a href="#pthreadmutexinit">pthread_mutex_init</a></li>
<li><a href="#pthreadmutexlock">pthread_mutex_lock</a></li>
<li><a href="#pthreadmutextrylock">pthread_mutex_trylock</a></li>
<li><a href="#pthreadmutexunlock">pthread_mutex_unlock</a></li>
<li><a href="#pthreadocndattrdestroy">pthread_condattr_destroy</a></li>
<li><a href="#pthreadself">pthread_self</a></li>
<li><a href="#pthreadsetcancelstate">pthread_setcancelstate</a></li>
<li><a href="#pthreadsetschedparam">pthread_setschedparam</a></li>
<li><a href="#pthreadsetspecific">pthread_setspecific</a></li>
<li><a href="#pthreadsigmask">pthread_sigmask</a></li>
<li><a href="#pthreadtestcancelstate">pthread_testcancelstate</a></li>
<li><a href="#pthreadyield">pthread_yield</a></li>
<li><a href="#standardio">puts</a></li>
<li><a href="#mmapxip">RAM disk driver</a></li>
<li><a href="#drvrunistdops">read</a></li>
<li><a href="#dirdirentops">readdir</a></li>
<li><a href="#dirdirentops">readdir_r</a></li>
<li><a href="#recv">recv</a></li>
<li><a href="#recvfrom">recvfrom</a></li>
<li><a href="#standardio">rename</a></li>
<li><a href="#standardio">rmdir</a></li>
<li><a href="#dirdirentops">rewinddir</a></li>
<li><a href="#mmapxip">ROM disk driver</a></li>
<li><a href="#mmapxip">ROMFS</a></li>
<li><a href="#schedgetprioritymax">sched_get_priority_max</a></li>
<li><a href="#schedgetprioritymin">sched_get_priority_min</a></li>
<li><a href="#schedgetrrinterval">sched_get_rr_interval</a></li>
<li><a href="#schedlockcount">sched_lockcount</a></li>
<li><a href="#schedlock">sched_lock</a></li>
<li><a href="#schedsetparam">sched_setparam</a></li>
<li><a href="#schedsetscheduler">sched_setscheduler</a></li>
<li><a href="#schedunlock">sched_unlock</a></li>
<li><a href="#sched_yield">sched_yield</a></li>
<li><a href="#Semaphores">Counting Semaphore Interfaces</a>
<li><a href="#semclose">sem_close</a></li>
<li><a href="#semdestroy">sem_destroy</a></li>
<li><a href="#semgetvalue">sem_getvalue</a></li>
<li><a href="#seminit">sem_init</a></li>
<li><a href="#semopen">sem_open</a></li>
<li><a href="#sempost">sem_post</a></li>
<li><a href="#semtrywait">sem_trywait</a></li>
<li><a href="#semunlink">sem_unlink</a></li>
<li><a href="#semwait">sem_wait</a></li>
<li><a href="#setgetscheduler">sched_getscheduler</a></li>
<li><a href="#dirdirentops">seekdir</a></li>
<li><a href="#send">send</a></li>
<li><a href="#sendto">sendto</a></li>
<li><a href="#setsockopt">setsockopt</a></li>
<li><a href="#sigaction">sigaction</a></li>
<li><a href="#sigaddset">sigaddset</a></li>
<li><a href="#sigdelset">sigdelset</a></li>
<li><a href="#sigemptyset">sigemptyset</a></li>
<li><a href="#sigfillset">sigfillset</a></li>
<li><a href="#sigismember">sigismember</a></li>
<li><a href="#Signals">Signal Interfaces</a>
<li><a href="#sigpending">sigpending</a></li>
<li><a href="#sigprocmask">sigprocmask</a></li>
<li><a href="#sigqueue">sigqueue</a></li>
<li><a href="#sigsuspend">sigsuspend</a></li>
<li><a href="#sigtimedwait">sigtimedwait</a></li>
<li><a href="#sigwaitinfo">sigwaitinfo</a></li>
<li><a href="#standardio">sprintf</a></li>
<li><a href="#standardio">Standard I/O</a></li>
<li><a href="#standardio">stat</a></li>
<li><a href="#standardio">statfs</a></li>
<li><a href="#drvselectops">sys/select.h</a></li>
<li><a href="#drvrioctlops">sys/ioctl.h</a></li>
<li><a href="#taskactivate">task_activate</a></li>
<li><a href="#Task_Control">Task Control Interfaces</a>
<li><a href="#taskcreate">task_create</a></li>
<li><a href="#taskdelete">task_delete</a></li>
<li><a href="#taskinit">task_init</a></li>
<li><a href="#taskrestart">task_restart</a></li>
<li><a href="#Task_Schedule">Task Scheduling Interfaces</a>
<li><a href="#Task_Switch">Task Switching Interfaces</a>
<li><a href="#dirdirentops">telldir</a></li>
<li><a href="#timercreate">timer_create</a></li>
<li><a href="#timerdelete">timer_delete</a></li>
<li><a href="#timergetoverrun">timer_getoverrun</a></li>
<li><a href="#timergettime">timer_gettime</a></li>
<li><a href="#ClocksNTimers">Timers</a></li>
<li><a href="#timersettime">timer_settime</a></li>
<li><a href="#standardio">ungetc</a></li>
<li><a href="#drvrunistdops">unistd.h</a>,
<a href="#dirunistdops">unistd.h</a></li>
<li><a href="#drvrunistdops">unlink</a></li>
<li><a href="#standardio">vfprintf</a></li>
<li><a href="#standardio">vprintf</a></li>
<li><a href="#standardio">vsprintf</a></li>
<li><a href="#Watchdogs">Watchdog Timer Interfaces</a>
<li><a href="#wdcancel">wd_cancel</a></li>
<li><a href="#wdcreate">wd_create</a></li>
<li><a href="#wddelete">wd_delete</a></li>
<li><a href="#wdgettime">wd_gettime</a></li>
<li><a href="#drvrunistdops">write</a></li>