Newer
Older
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>TI TMS320DM320</b> (also called <b>DM320</b>).
NuttX operates on the ARM9 of this dual core processor.
This port uses the
<a href="http://wiki.neurostechnology.com/index.php/Developer_Welcome">Neuros OSD</a>
The port was performed using the OSD v1.0, development board.
<ul>
<p>
<b>STATUS:</b>
The basic port (timer interrupts, serial ports, network, framebuffer, etc.) is complete.
All implemented features have been verified with the exception of the USB device-side
driver; that implementation is complete but untested.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<b>NXP <a href="http://ics.nxp.com/products/lpc3000/lpc313x.lpc314x.lpc315x/">LPC3131</a></b>.
The port for the NXP LPC3131 on the <a href="http://www.embeddedartists.com/products/kits/lpc3131_kit.php">Embedded Artists EA3131</a>
development board was first released in NuttX-5.1 with a GNU arm-elf or arm-eabi toolchain* under Linux or Cygwin
The basic EA3131 port is complete and verified in NuttX-5.2
This basic port includes basic boot-up, serial console, and timer interrupts.
This port was extended in NuttX 5.3 with a USB high speed driver contributed by David Hewson.
David also contributed I2C and SPI drivers plus several important LPC313x USB bug fixes
that appear in the NuttX 5.6 release.
This port has been verified using the NuttX OS test, USB serial and mass storage
tests and includes a working implementation of the NuttShell (<a href="NuttShell.html">NSH</a>).
<p>
Support for <a href="NuttXDemandPaging.html">on-demand paging</a> has been developed for the EA3131.
That support would all execute of a program in SPI FLASH by paging code sections out of SPI flash as needed.
However, as of this writing, I have not had the opportunity to verify this new feature.
</p>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>ARM Cortex-M3</b>.
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
This port uses the <a href=" http://www.micromint.com/">Micromint</a> Eagle-100 development
board with a GNU arm-elf toolchain* under either Linux or Cygwin.
<ul>
<p>
<b>STATUS:</b>
The initial, release of this port was included in NuttX version 0.4.6.
The current port includes timer, serial console, Ethernet, SSI, and microSD support.
There are working configurations the NuttX OS test, to run the <a href="NuttShell.html">NuttShell
(NSH)</a>, the NuttX networking test, and the uIP web server.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573&package_id=224585">buildroot</a>
package.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Luminary/TI LM3S6965</b>.
This port uses the Stellaris LM3S6965 Ethernet Evalution Kit with a GNU arm-elf toolchain*
under either Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port was released in NuttX 5.5.
Features are the same as with the Eagle-100 LM3S6918 described above.
The examples/ostest configuration has been successfully verified and an
NSH configuration with telnet support is available.
MMC/SD and Networking support was not been thoroughly verified:
Current development efforts are focused on porting the NuttX window system (NX)
to work with the Evaluation Kits OLED display.
<p><small>
<b>NOTE</b>: As it is configured now, you MUST have a network connected.
Otherwise, the NSH prompt will not come up because the Ethernet
driver is waiting for the network to come up.
</small></p>
<b>Development Environments:</b> See the Eagle-100 LM3S6918 above.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
<tr>
<td><br></td>
<td>
<p>
<b>Luminary/TI Stellaris EKC-LM3S8962 Ethernet+CAN Evaluation Kit</b>.
This port uses the Stellaris EKC-LM3S8962 Ethernet+CAN Evalution Kit with a GNU arm-elf toolchain*
under either Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port was released in NuttX 5.10.
Features are the same as with the Eagle-100 LM3S6918 described above.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
This port uses the <a href=" http://www.st.com/">STMicro</a> STM3210E-EVAL development board that
features the STM32F103ZET6 MCU.
This port uses a GNU arm-elf toolchain* under either Linux or Cygwin (with native Windows GNU
tools or Cygwin-based GNU tools).
The basic STM32 port was released in NuttX version 0.4.12. The basic port includes boot-up
logic, interrupt driven serial console, and system timer interrupts.
The 0.4.13 release added support for SPI, serial FLASH, and USB device.;
The 4.14 release added support for buttons and SDIO-based MMC/SD and verifed DMA support.
Verified configurations are available for NuttX OS test, the NuttShell (NSH) example,
the USB serial device class, and the USB mass storage device class example.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (RIDE7, CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573&package_id=224585">buildroot</a>
package.
</p>
</ul>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Atmel AT91SAM3U</b>.
This port uses the <a href="http://www.atmel.com/">Atmel</a> SAM3U-EK
development board that features the AT91SAM3U4E MCU.
This port uses a GNU arm-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU
tools or Cygwin-based GNU tools).
</p>
<ul>
<p>
<b>STATUS:</b>
The basic SAM3U-EK port was released in NuttX version 5.1. The basic port includes boot-up
logic, interrupt driven serial console, and system timer interrupts.
That release passes the NuttX OS test and is proven to have a valid OS implementation.
A configuration to support the NuttShell is also included.
NuttX version 5.4 adds support for the HX8347 LCD on the SAM3U-EK board.
This LCD support includes an example using the
<a href=" http://www.nuttx.org/NXGraphicsSubsystem.html">NX graphics system</a>.
</p>
<p>
Subsequent NuttX releases will extend this port and add support for SDIO-based SD cards and
USB device (and possible LCD support).
These extensions may or may not happen by the Nuttx 5.5 release as my plate is kind of full now.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573&package_id=224585">buildroot</a>
package.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>NXP LPC1768</b>.
This port uses the Nucleus 2G board from <a href="http://www.2g-eng.com/">2G Engineering</a>
featuring the NXP LPC1768 MCU.
This port uses a GNU arm-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU
tools or Cygwin-based GNU tools).
Some initial files for the LPC17xx family were released in NuttX 5.6, but the first
functional release for the NXP LPC1768/Nucleus2G occured with NuttX 5.7 with some
additional enhancements through NuttX-5.9.
That initial, 5.6, basic release included timer interrupts and a serial console and was
verified using the NuttX OS test (<code>examples/ostest</code>).
Configurations available include include a verified NuttShell (NSH) configuration
(see the <a href="http://www.nuttx.org/NuttShell.html">NSH User Guide</a>).
The NSH configuration support the Nucleus2G's microSD slot and additional configurations
are available to exercise the the USB serial and USB mass storage devices.
However, due to some technical reasons, neither the SPI nor the USB device drivers are fully verified.
(Although it has been reported to me that the SPI microSD is functional on other platforms).
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573&package_id=224585">buildroot</a>
package.
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>8052 Microcontroller</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
This port uses the <a href="http://www.pjrc.com/">PJRC</a> 87C52 development system
and the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain under Linux or Cygwin.
<ul>
<p>
<b>STATUS:</b>
This port is complete but not stable with timer interrupts enabled.
There seems to be some issue when the stack pointer enters into the indirect IRAM
address space during interrupt handling.
This architecture has not been built in some time will likely have some compilation
problems because of SDCC compiler differences.
</p>
</ul>
</td>
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Frescale M68HSC12</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>MC9S12NE64</b>.
This port uses the Freescale DEMO9S12NE64 Evaluation Board with a GNU arm-elf toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port only fragmentary as of NuttX-5.0. Some initial pieces appear in that
release, but much more is needed. Time permitting, the HCS12 port may be available
int NuttX5.1.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Renesas/Hitachi SuperH</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>SH-1 SH7032</b>.
This port uses the Hitachi SH-1 Low-Cost Evaluation Board (SH1_LCEVB1), US7032EVB,
with a GNU arm-elf toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is available as of release 0.3.18 of NuttX. The port is basically complete
and many examples run correctly. However, there are remaining instabilities that
make the port un-usable. The nature of these is not understood; the behavior is
that certain SH-1 instructions stop working as advertised. This could be a silicon
problem, some pipeline issue that is not handled properly by the gcc 3.4.5 toolchain
(which has very limit SH-1 support to begin with), or perhaps with the CMON debugger.
At any rate, I have exhausted all of the energy that I am willing to put into this cool
old processor for the time being.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Renesas M16C/26</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Renesas M16C/26 Microncontroller</b>.
This port uses the Renesas SKP16C26 Starter kit and the GNU M32C toolchain.
The development environment is either Linux or Cygwin under WinXP.
</p>
<p>
<b>STATUS:</b>
Initial source files released in nuttx-0.4.2.
At this point, the port has not been integrated; the target cannot be built
because the GNU <code>m16c-elf-ld</code> link fails with the following message:
</p>
<ul>
<code>m32c-elf-ld: BFD (GNU Binutils) 2.19 assertion fail /home/Owner/projects/nuttx/buildroot/toolchain_build_m32c/binutils-2.19/bfd/elf32-m32c.c:482</code>
</ul>
<p>Where the reference line is:</p>
<ul><pre>
/* If the symbol is out of range for a 16-bit address,
we must have allocated a plt entry. */
BFD_ASSERT (*plt_offset != (bfd_vma) -1);
</pre></ul>
<p>
No workaround is known at this time. This is a show stopper for M16C for
the time being.
</p>
</ul>
</td>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<b>Zilog Z16F</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog z16f Microncontroller</b>.
This port use the Zilog z16f2800100zcog development kit and the Zilog
ZDS-II Windows command line tools.
<ul>
<p>
<b>STATUS:</b>
The initial release of support for the z16f was made available in NuttX version 0.3.7.
</p>
</ul>
</td>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog eZ80Acclaim! Microncontroller</b>.
<ul>
<li>One uses the ZiLOG ez80f0910200kitg development kit, and
<li>The other uses the ZiLOG ez80f0910200zcog-d development kit.
</ul>
Both boards are based on the eZ80F091 part and both use the Zilog ZDS-II
Windows command line tools.
The development environment is Cygwin under WinXP.
<ul>
<p>
<b>STATUS:</b>
Integration and testing of NuttX on the ZiLOG ez80f0910200zcog-d is complete.
The first integrated version was released in NuttX version 0.4.2 (with important early bugfixes
in 0.4.3 and 0.4.4).
As of this writing, that port provides basic board support with a serial console, SPI, and eZ80F91 EMAC driver.
</p>
</ul>
</td>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Zilog Z8Encore!</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog Z8Encore! Microncontroller</b>.
This port uses the either:
</p>
<ul>
<li>Zilog z8encore000zco development kit, Z8F6403 part, or</li>
<li>Zilog z8f64200100kit development kit, Z8F6423 part</li>
</ul>
<p>
and the Zilog ZDS-II Windows command line tools.
The development environment is Cygwin under WinXP.
</p>
<ul>
<p>
<b>STATUS:</b>
This release has been verified only on the ZiLOG ZDS-II Z8Encore! chip simulation
as of nuttx-0.3.9.
</p>
<ul>
</td>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Z80 Instruction Set Simulator</b>.
This port uses the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain
under Linux or Cygwin (verified using version 2.6.0).
This port has been verified using only a Z80 instruction simulator.
That simulator can be found in the NuttX CVS
<a href="http://nuttx.cvs.sourceforge.net/nuttx/misc/sims/z80sim/">here</a>.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is complete and stable to the extent that it can be tested
using an instruction set simulator.
</p>
<ul>
</td>
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>XTRS: TRS-80 Model I/III/4/4P Emulator for Unix</b>.
A very similar Z80 port is available for <a href="http://www.tim-mann.org/xtrs.html">XTRS</a>,
the TRS-80 Model I/III/4/4P Emulator for Unix.
That port also uses the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain
under Linux or Cygwin (verified using version 2.6.0).
</p>
<ul>
<p>
<b>STATUS:</b>
Basically the same as for the Z80 instruction set simulator.
This port was contributed by Jacques Pelletier.
</p>
<ul>
</td>
</tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Other ports</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
There are partial ports for the TI TMS320DM270 and for MIPS.
</p>
<blockquote>* A highly modified <a href="http://buildroot.uclibc.org/">buildroot</a>
is available that may be used to build a NuttX-compatible ELF toolchain under
Linux or Cygwin. Configurations are available in that buildroot to support ARM,
m68k, m68hc11, m68hc12, and SuperH ports.</blockquote>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="environments"><h1>Development Environments</h1></a>
</td>
</tr>
</table>
<center><table width="90%">
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
The is the most natural development environment for NuttX.
Any version of the GCC/binutils toolchain may be used.
There is a highly modified <a href="http://buildroot.uclibc.org/">buildroot</a>
available for download from the
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573">NuttX SourceForge</a>
page.
This download may be used to build a NuttX-compatible ELF toolchain under Linux or Cygwin.
That toolchain will support ARM, m68k, m68hc11, m68hc12, and SuperH ports.
The buildroot CVS may be accessed in the
<a href="http://nuttx.cvs.sourceforge.net/nuttx/misc/buildroot/">NuttX CVS</a>.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
Also very usable is the Linux environment using the
<a href="http://sdcc.sourceforge.net/">SDCC</a> compiler.
The SDCC compiler provides support for the 8051/2, z80, hc08, and other microcontrollers.
The SDCC-based logic is less well exercised and you will likely find some compilation
issues if you use parts of NuttX with SDCC that have not been well-tested.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
This combination works well too.
It works just as well as the native Linux environment except
that compilation and build times are a little longer.
The custom NuttX buildroot referenced above may be build in
the Cygwin environment as well.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
I have never tried this combination, but it would probably work just fine.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
This is a tougher environment.
In this case, the Windows native toolchain is unaware of the
Cygwin <i>sandbox</i> and, instead, operates in the native Windows environment.
The primary difficulties with this are:
</p>
<ul>
<li>
<b>Paths</b>.
Full paths for the native toolchain must follow Windows standards.
For example, the path <code>/home/my\ name/nuttx/include</code> my have to be
converted to something like <code>'C:\cygwin\home\my name\nuttx\include'</code>
to be usable by the toolchain.
</li>
<p>
Fortunately, this conversion is done simply using the <code>cygpath</code> utility.
</p>
<li>
<b>Symbolic Links</b>
NuttX depends on symbolic links to install platform-specific directories in the build system.
On Linux, true symbolic links are used.
On Cygwin, emulated symbolic links are used.
Unfortunately, for native Windows applications that operate outside of the
Cygwin <i>sandbox</i>, these symbolic links cannot be used.
</li>
<p>
The NuttX make system works around this limitation by copying the platform
specific directories in place.
These copied directories make work a little more complex, but otherwise work well.
</p>
<p><small>
NOTE: In this environment, it should be possible to use the NTFS <code>mklink</code> command to create links.
This should only require a minor modification to the build scripts (see <code>tools/winlink.sh</code> script).
</small></p>
<li>
<b>Dependencies</b>
NuttX uses the GCC compiler's <code>-M</code> option to generate make dependencies. These
dependencies are retained in files called <code>Make.deps</code> throughout the system.
For compilers other than GCC, there is no support for making dependencies in this way.
For Windows native GCC compilers, the generated dependencies are windows paths and not
directly usable in the Cygwin make. By default, dependencies are surpressed for these
compilers as well.
</li>
<p><small>
NOTE: dependencies are suppress by setting the make variable <code>MKDEPS</code> to point
to the do-nothing dependency script, <code>tools/mknulldeps.sh</code>.
Dependencies can be enabled for the Windows native GCC compilers by setting
<code>MKDEPS</code> to point to <code>$(TOPDIR)/tools/mkdeps.sh --winpaths $(TOPDIR)</code>.
</small></p>
At present, only the Zilog Z16F, z8Encore, and eZ80Acclaim ports use a non-GCC native Windows
toolchain(the Zilog ZDS-II toolchain).
Support for Windows native GCC toolchains (CodeSourcery and devkitARM) is currently implemented
for the NXP LPC214x, STMicro STR71x, and Luminary LMS6918 ARM ports.
(but could easily be extended to any other GCC-based platform with a small effort).
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Other Environments?
Windows Native <code>make</code> + Windows Native Toolchain?</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
The primary environmental dependency of NuttX are (1) GNU make,
(2) bash scripting, and (3) Linux utilities (such as cat, sed, etc.).
If you have other platforms that support GNU make or make
utilities that are compatible with GNU make, then it is very
likely that NuttX would work in that environment as well (with some
porting effort). If GNU make is not supported, then some significant
modification of the Make system would be required.
<p>
<b>GNUWin32</b>.
For example, with suitable make system changes, it should be possible to
use native GNU tools (such as those from
<a href="http://sourceforge.net/projects/gnuwin32/">GNUWin32</a>)
to build NuttX.
However, that environment has not been used as of this writing.
</p>
<p><small>
NOTE: One of the members on the <a href="http://tech.groups.yahoo.com/group/nuttx/">NuttX forum</a>
reported that they successful built NuttX using such a GNUWin32-based, Windows native environment.
They reported that the only necessary change was to the use the NTFS mklink command to create links
(see <code>tools/winlink.sh</code> script).
</small></p>
</td>
</tr>
</table></center>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="footprint"><h1>Memory Footprint</h1></a>
</td>
</tr>
</table>
The build for this ARM7 target that includes most of the OS features and
a broad range of OS tests. The size of this executable as given by the
Linux <tt>size</tt> command is (3/9/07):
<pre>
text data bss dec hex filename
53272 428 3568 57268 dfb4 nuttx
</pre>
This build for the ARM9 target includes a significant subset of OS
features, a filesystem, Ethernet driver, full TCP/IP, UDP and (minimal)
ICMP stacks (via uIP) and a small network test application: (11/8/07,
configuration netconfig, examples/nettest)
</p>
<pre>
text data bss dec hex filename
<p>
Another build for the ARM9 target includes a minimal OS feature
set, Ethernet driver, full TCP/IP and (minimal) ICMP stacks, and
a small webserver: (11/20/07, configuration uipconfig, examples/uip)
</p>
<pre>
text data bss dec hex filename
52040 72 4148 56260 dbc4 nuttx
</pre>
A reduced functionality OS test for the 8052 target requires only
about 18-19Kb:
<pre>
Stack starts at: 0x21 (sp set to 0x20) with 223 bytes available.
Other memory:
Name Start End Size Max
---------------- -------- -------- -------- --------
PAGED EXT. RAM 0 256
EXTERNAL RAM 0x0100 0x02fd 510 7936
ROM/EPROM/FLASH 0x2100 0x6e55 19798 24384
</pre>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="licensing"><h1>Licensing</h1></a>
</td>
</tr>
</table>
<ul>
<p>
NuttX is available under the highly permissive
<a href="http://en.wikipedia.org/wiki/BSD_license">BSD license</a>.
you should feel absolutely free to use NuttX in any environment and
without any concern for jeopardizing any proprietary software that
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="history"><h1>Release History</h1></a>
</td>
</tr>
</table>
<ul>
<p>
The current NuttX Change Log is available in CVS <a href="http://nuttx.cvs.sourceforge.net/*checkout*/nuttx/nuttx/ChangeLog">here</a>.
ChangeLog snapshots associated with the current release are available below.
</p>
</ul>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<a href="#currentrelease">ChangeLog for the Current Releases</a><br>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td>
<a href="#pendingchanges">Unreleased Changes</a>
</td>
</tr>
</table></center>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="currentrelease">ChangeLog for the Current Release</a>
nuttx-5.9 2010-08-25 Gregory Nutt <spudmonkey@racsa.co.cr>
* examples/nsh/nsh_telnetd.c - Fix compilation errors that happen
when both DHCPC and TELNETD are enabled in the Nuttshell.
* graphics/nxglib/fb/nxglib_moverectangle.c - Fix a logic error
that caused an uninitialized variable warning. I still don't
have a test to prove that the changes are correct.
* configs/olimex-lpc2378 - Add support for the CodeSourcery toolchain
under Linux (contributed by Alan Carvalho de Assis).
* arch/arm/src/lpc17xx/lpc17_gpio.c - Fix an important GPIO configuration
bug: When attempting to set no pull-up or pull-down (floating),
it would, instead, select pull-down.
* arch/arm/src/lm3s/lm3s_gpioirq.c - Fix warning for returning a value
from functions returning void (contributed by Tiago Maluta).
* examples/uip/main.c - if DHCPC is selected, this example now shows
the assigned IP address.
* arch/arm/src/lm3s and arch/arm/include/lm3s - Definitions for the
TI LM3S9B96 contributed by Tiago Maluta.
* arch/arm/src/lm3s/lm3s_gioirq.c - Fix a logic error in the address
table lookup.
* arch/arm/src/lm3s/lm3s_gioirq.c - Also needs to enable the global
* arch/arm/src/lm3s/lm3s_internal.h and lm3s_gpio.c - Fixed the encoding
of GPIO port number that limited support for GPIO ports to 8
* sched/pg_*.c and *.c and include/nuttx/page.h - Implemented the
common, core logic for on-demand paging. See
http://www.nuttx.org/NuttXDemandPaging.html for details.
* drivers/usbdev/usbdev_serial.c - Correct compilation errors that
occur if CONFIG_USBDEV_DUALSPEED is selected.
* configs/ea3131/pgnsh - Add an NSH configuration with on-demand paging
enabled. This is not expected to be a functionality configuration (at
least not yet); it was created in order to debug the on-demand paging
feature.
* configs/ntosd-dm320/*/Make.defs - Codesourcery and devkitARM toolchains
now supported for the Neuros OSD.
* configs/ntosd-dm320 and arch/arm/src/dm320 - Add support for the
Neuros production OSD (changes contributed by bf.nuttx).
pascal-2.0 2009-12-21 Gregory Nutt <spudmonkey@racsa.co.cr>
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
* Updated to use standard C99 types in stdint.h and
stdbool.h. This change was necessary for compatibility
with NuttX-5.0 (any beyond).
buildroot-1.8 2009-12-21 <spudmonkey@racsa.co.cr>
* configs/cortexm3-defconfig-4.3.3: Added support for NuttX NXFLAT
tools.
* configs/arm7tdmi-defconfig-4.3.3: Update to arm7tdmi-defconfig-4.2.4.
Also builds NuttX NXFLAT tools.
* configs/m68hc12-defconfig-4.3.3: Update to m68ch11-defconfig.
* configs/m68hc12-defconfig-3.4.6: There are problems building GCC
4.3.3 for the hc12.
* configs/m32c-defconfig-4.2.4: Added genromfs
* configs/m32c-defconfig-4.3.3: Update to m32c-defconfig-4.2.4
</pre></ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="pendingchanges">Unreleased Changes</a>
</td>
</tr>
</table>
<ul><pre>
nuttx-5.10 2010-xx-xx Gregory Nutt <spudmonkey@racsa.co.cr>
* configs/ea3131/locked - Create logic to support a two pass build
process: The first pass forces critical logic into the locked text
region, the second pass builds the NuttX executable more-or-less as
normal.
* Makefile, arch/arm/src/Makefile, configs/ea3131 - Add logic to
support a two-pass final link. This logic is only in place in
the arch/arm/src/Makefile for now.
* arch/arm/src/lpc17xx/lpc17_internal.h - Add missing parentheses in
macros definitions (patch submitted by Tiago Maluta).
* Documents/NuttxPortingGuide.html, configs/README.txt, etc. -
Replaced CONFIG_EXAMPLE with CONFIG_APP_DIR (see documents for
desciption). This allows NuttX application code to be built
outside of the examples/ directory.
For people who have their own configurations and/or Makefiles,
you will need to make a couple of changes:
- Replace all occurrences of CONFIG_EXAMPLE=foobar with
CONFIG_APP_DIR=examples/foobar in all of the configuration
files.
- Replace any occurrences of examples/$(CONFIG_EXAMPLE) with
$(CONFIG_APP_DIR)
- Replace any occurrences of lib$(CONFIG_EXAMPLE)$(LIBEXT)
with libapp$(LIBEXT) in your Makefiles.
- Check any other occurrences of CONFIG_EXAMPLE.pascal-2.1 2010-xx-xx Gregory Nutt <spudmonkey@racsa.co.cr>
* arch/arm/src/lpc313x/lpc313x_spi.c - Fix compilation error when
when CONFIG_DEBUG is enabled.
* arch/arm/src/lm3s and arch/arm/include/lm3s - Support for the
lm3s8962 contributed by Larry Arnold.
* configs/lm328962-ek - Support for the TI/Stellaris EKC-LM3S8962
board (also contributed by Larry Arnold).
pascal-2.1 2010-xx-xx Gregory Nutt <spudmonkey@racsa.co.cr>
* configs/arm926t-defconfig-4.3.3: update arm926t-defconfig-4.2.4
* configs/arm926t-defconfig-nxflat: NXFLAT-only configuration for
arm926
* toolchain/gdb/gdb.mk - Remove ncurses dependency from gdb_target target.
* toolchain/gdb/gdb.mk - Added --disable-werror to GDB configuration line.
GDB 6.8 won't build because the tarball was released with -Werror enabled and
the build stops on the first warning.
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="TODO"><h1>Bugs, Issues, <i>Things-To-Do</i></h1></a>
</td>
</tr>
</table>
<ul>
<p>
The current list of NuttX <i>Things-To-Do</i> in CVS <a href="http://nuttx.cvs.sourceforge.net/*checkout*/nuttx/nuttx/TODO">here</a>.
A snapshot of the <i>To-Do</i> list associated with the current release are available <a href="TODO.txt">here</a>.
</p>
</ul>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="documentation"><h1>Other Documentation</h1></a>
</td>
</tr>
</table>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td valign="top" width="22"><img height="20" width="20" src="favicon.ico"></td>
<td><a href="NuttShell.html">NuttShell (NSH)</a></td>
</tr>