Newer
Older
<td><br></td>
<td>
<p>
<b>STMicro STR71x</b>.
Support is provided for the STMicro STR71x family of processors. In particular,
support is provided for the Olimex STR-P711 evaluation board.
This port also used the GNU arm-elf toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
Integration is complete on the basic port (boot logic, system time, serial console).
Two configurations have been verified: (1) The board boots and passes the OS test
with console output visible on UART0, and the NuttShell (<a href="NuttShell.html">NSH</a>)
is fully functional with interrupt driven serial console. An SPI driver is available
but only partially tested. Additional features are needed: USB driver, MMC integration,
to name two (the slot on the board appears to accept on MMC card dimensions; I have only
SD cards).
An SPI-based ENC29J60 Ethernet driver for add-on hardware is under development and
should be available in the NuttX 5.5 release.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573&package_id=224585">buildroot</a>
package.
</p>
</ul>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>ARM920T</b>.
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Freescale MC9328MX1</b> or <b>i.MX1</b>.
This port uses the Freescale MX1ADS development board with a GNU arm-elf toolchain*
under either Linux or Cygwin.
</p>
This port has stalled due to development tool issues.
Coding is complete on the basic port (timer, serial console, SPI).
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>TI TMS320DM320</b> (also called <b>DM320</b>).
NuttX operates on the ARM9 of this dual core processor.
This port uses the
<a href="http://wiki.neurostechnology.com/index.php/Developer_Welcome">Neuros OSD</a>
The port was performed using the OSD v1.0, development board.
<ul>
<p>
<b>STATUS:</b>
The basic port (timer interrupts, serial ports, network, framebuffer, etc.) is complete.
All implemented features have been verified with the exception of the USB device-side
driver; that implementation is complete but untested.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<b>NXP <a href="http://ics.nxp.com/products/lpc3000/lpc313x.lpc314x.lpc315x/">LPC3131</a></b>.
The port for the NXP LPC3131 on the <a href="http://www.embeddedartists.com/products/kits/lpc3131_kit.php">Embedded Artists EA3131</a>
development board was first released in NuttX-5.1 with a GNU arm-elf or arm-eabi toolchain* under Linux or Cygwin
The basic EA3131 port is complete and verified in NuttX-5.2
This basic port includes basic boot-up, serial console, and timer interrupts.
This port was extended in NuttX 5.3 with a USB high speed driver contributed by David Hewson.
David also contributed I2C and SPI drivers plus several important LPC313x USB bug fixes
that appear in the NuttX 5.6 release.
This port has been verified using the NuttX OS test, USB serial and mass storage
tests and includes a working implementation of the NuttShell (<a href="NuttShell.html">NSH</a>).
<p>
Support for <a href="NuttXDemandPaging.html">on-demand paging</a> has been developed for the EA3131.
That support would all execute of a program in SPI FLASH by paging code sections out of SPI flash as needed.
However, as of this writing, I have not had the opportunity to verify this new feature.
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>ARM Cortex-M3</b>.
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
This port uses the <a href=" http://www.micromint.com/">Micromint</a> Eagle-100 development
board with a GNU arm-elf toolchain* under either Linux or Cygwin.
<ul>
<p>
<b>STATUS:</b>
The initial, release of this port was included in NuttX version 0.4.6.
The current port includes timer, serial console, Ethernet, SSI, and microSD support.
There are working configurations the NuttX OS test, to run the <a href="NuttShell.html">NuttShell
(NSH)</a>, the NuttX networking test, and the uIP web server.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573&package_id=224585">buildroot</a>
package.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Luminary/TI LM3S6965</b>.
This port uses the Stellaris LM3S6965 Ethernet Evalution Kit with a GNU arm-elf toolchain*
under either Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port was released in NuttX 5.5.
Features are the same as with the Eagle-100 LM3S6918 described above.
The examples/ostest configuration has been successfully verified and an
NSH configuration with telnet support is available.
MMC/SD and Networking support was not been thoroughly verified:
Current development efforts are focused on porting the NuttX window system (NX)
to work with the Evaluation Kits OLED display.
<p><small>
<b>NOTE</b>: As it is configured now, you MUST have a network connected.
Otherwise, the NSH prompt will not come up because the Ethernet
driver is waiting for the network to come up.
</small></p>
<b>Development Environments:</b> See the Eagle-100 LM3S6918 above.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
This port uses the Stellaris EKC-LM3S8962 Ethernet+CAN Evalution Kit with a GNU arm-elf toolchain*
under either Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port was released in NuttX 5.10.
Features are the same as with the Eagle-100 LM3S6918 described above.
</p>
</ul>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Luminary/TI LM3S9B96</b>.
Header file support was contributed by Tiago Maluta for this part.
However, no complete board support configuration is available as of this writing.
</p>
</td>
</tr>
<tr>
<td><br></td>
<td><hr></td>
</tr>
Support for three MCUs and two board configurations are available.
MCU support includes: STM32F103ZET6, STM32F103RET6, and STM32F107VC.
Board support includes:
</p>
<ol>
<li>
This port uses the <a href=" http://www.st.com/">STMicro</a> STM3210E-EVAL development board that
features the STM32F103ZET6 MCU.
</li>
<li>
ISOTEL NetClamps VSN V1.2 ready2go sensor network platform based on the
STMicro STM32F103RET6. Contributed by Uros Platise.
</li>
</ol>
<p>
These ports uses a GNU arm-elf toolchain* under either Linux or Cygwin (with native Windows GNU
<ul>
<li>
The basic STM32 port was released in NuttX version 0.4.12. The basic port includes boot-up
logic, interrupt driven serial console, and system timer interrupts.
The 0.4.13 release added support for SPI, serial FLASH, and USB device.;
The 4.14 release added support for buttons and SDIO-based MMC/SD and verifed DMA support.
Verified configurations are available for NuttX OS test, the NuttShell (NSH) example,
the USB serial device class, and the USB mass storage device class example.
</li>
<li>
Support for the NetClamps VSN was included in version 5.18 of NuttX.
</li>
</ul>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (RIDE7, CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573&package_id=224585">buildroot</a>
package.
</p>
</ul>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Atmel AT91SAM3U</b>.
This port uses the <a href="http://www.atmel.com/">Atmel</a> SAM3U-EK
development board that features the AT91SAM3U4E MCU.
This port uses a GNU arm-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU
tools or Cygwin-based GNU tools).
</p>
<ul>
<p>
<b>STATUS:</b>
The basic SAM3U-EK port was released in NuttX version 5.1. The basic port includes boot-up
logic, interrupt driven serial console, and system timer interrupts.
That release passes the NuttX OS test and is proven to have a valid OS implementation.
A configuration to support the NuttShell is also included.
NuttX version 5.4 adds support for the HX8347 LCD on the SAM3U-EK board.
This LCD support includes an example using the
<a href=" http://www.nuttx.org/NXGraphicsSubsystem.html">NX graphics system</a>.
</p>
<p>
Subsequent NuttX releases will extend this port and add support for SDIO-based SD cards and
USB device (and possible LCD support).
These extensions may or may not happen by the Nuttx 5.5 release as my plate is kind of full now.
</p>
<p>
<b>Development Environments:</b>
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a>
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>NXP LPC1766 and LPC1768</b>.
Configurations are available for three boards:
<ul>
<li>
The Nucleus 2G board from <a href="http://www.2g-eng.com/">2G Engineering</a> (LPC1768),
</li>
<li>
The mbed board from <a href="http://mbed.org">mbed.org</a> (LPC1768, Contributed by Dave Marples), and
</li>
<li>
The LPC1766-sTK board from <a href="http://www.olimex.com/">Olimex</a> (LPC1766).
</li>
</ul>
</p>
<p>
The Nucleus 2G and the mbed boards feature the NXP LPC1768 MCU;
the Olimex LPC1766-STK board features an LPC1766.
All use a GNU arm-elf or arm-eabi toolchain* under either Linux or Cygwin (with native Windows GNU tools or Cygwin-based GNU tools).
The following summarizes the features that has been developed and verified on individual LPC17xx-based boards.
These features should, however, be common and available for all LPC17xx-based boards.
<ul>
<li>
Some initial files for the LPC17xx family were released in NuttX 5.6, but
</li>
<li>
The first functional release for the NXP LPC1768/Nucleus2G occured with NuttX 5.7 with
Some additional enhancements through NuttX-5.9.
</li>
</ul>
</p>
<p>
That initial, 5.6, basic release included <i>timer</i> interrupts and a <i>serial console</i> and was
verified using the NuttX OS test (<code>examples/ostest</code>).
Configurations available include include a verified NuttShell (NSH) configuration
(see the <a href="http://www.nuttx.org/NuttShell.html">NSH User Guide</a>).
The NSH configuration supports the Nucleus2G's microSD slot and additional configurations
are available to exercise the the USB serial and USB mass storage devices.
However, due to some technical reasons, neither the SPI nor the USB device drivers are fully verified.
(Although they have since been verfiied on other platforms; this needs to be revisited on the Nucleus2G).
<ul>
<li>
Support for the mbed board was contributed by Dave Marples and released in NuttX-5.11.
</li>
</ul>
</p>
<p>
This port includes a NuttX OS test configuration (see <code>examples/ostest</code>).
<ul>
<li>
Support for that Olimex-LPC1766-STK board was added to NuttX 5.13.
</li>
<li>
The NuttX-5.14 release extended that support with an <i>Ethernet driver</i>.
</li>
<li>
The NuttX-5.15 release further extended the support with a functional <i>USB device driver</i> and <i>SPI-based micro-SD</i>.
</li>
<li>
The NuttX-5.16 release added a functional <i>USB host controller driver</i> and <i>USB host mass storage class driver</i>.
</li>
<li>
The NuttX-5.17 released added support for low-speed USB devicers, interrupt endpoints, and a <i>USB host HID keyboard class driver</i>.
</li>
</ul>
</p>
<p>
Verified configurations are now available for the NuttX OS test,
for the NuttShell with networking and microSD support(NSH, see the <a href="ttp://www.nuttx.org/NuttShell.html">NSH User Guide</a>),
for the NuttX network test, for the <a href="http://acme.com/software/thttpd">THTTPD</a> webserver,
for USB serial deive and USB storage devices examples, and for the USB host HID keyboard driver.
Support for the USB host mass storage device can optionally be configured for the NSH example.
A driver for the <i>Nokia 6100 LCD</i> and an NX graphics configuration for the Olimex LPC1766-STK have been added.
However, neither the LCD driver nor the NX configuration have been verified as of the the NuttX-5.17 release.
1) Linux with native Linux GNU toolchain, 2) Cygwin with Cygwin GNU toolchain, or 3) Cygwin
with Windows native toolchain (CodeSourcery or devkitARM). A DIY toolchain for Linux
or Cygwin is provided by the NuttX
<a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
</td>
</tr>
<tr>
<td><br></td>
<td>
This port uses the <a href="http://www.pjrc.com/">PJRC</a> 87C52 development system
and the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain under Linux or Cygwin.
<ul>
<p>
<b>STATUS:</b>
This port is complete but not stable with timer interrupts enabled.
There seems to be some issue when the stack pointer enters into the indirect IRAM
address space during interrupt handling.
This architecture has not been built in some time will likely have some compilation
problems because of SDCC compiler differences.
</p>
</ul>
</td>
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Intel 80486 (i486) Microprocessor</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>QEMU i486</b>.
This port uses the <a href="http://wiki.qemu.org/Main_Page">QEMU</a> i486 and the native
Linux, Cywgin, MinGW the GCC toolchain under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is code complete but not yet tested. Stayed tuned.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Frescale M68HSC12</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>MC9S12NE64</b>.
Support for the MC9S12NE64 MCU and two boards are included:
</p>
<ul>
<li>
The Freescale DEMO9S12NE64 Evaluation Board, and
</li>
<li>
The Future Electronics Group NE64 /PoE Badge board.
</li>
</ul>
<p>
Both use a GNU arm-elf toolchain* under Linux or Cygwin.
The NuttX <a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a> provides a properly patched GCC 3.4.4 toolchain that is highly optimized for the m9s12x family.
Coding is complete for the MC9S12NE64 and for the NE64 Badge board.
However, testing has not yet begun due to issues with BDMs, Code Warrior, and
the paging in the build process.
Progress is slow, but I hope to see a fully verified MC9S12NE64 port in the near future.
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Atmel AVR32</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>AV32DEV1</b>.
This port uses the www.mcuzone.com AVRDEV1 board based on the Atmel AT32UC3B0256 MCU.
This port requires a special GNU avr32 toolchain available from atmel.com website.
This is a windows native toolchain and so can be used only under Cygwin on Windows.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is has completed all basic development, but there is more that needs to be done.
All code is complete for the basic NuttX port including header files for all AT32UC3* peripherals.
The untested AVR32 code was present in the 5.12 release of NuttX.
Since then, the basic RTOS port has solidified:
<ul>
<li>
The port successfully passes the NuttX OS test (examples/ostest).
</li>
<li>
A NuttShell (NSH) configuration is in place (see the <a href="http://www.nuttx.org/NuttShell.html">NSH User Guide</a>).
Testing of that configuration has been postponed (because it got bumped by the Olimex LPC1766-STK port).
Current Status: I think I have a hardware problem with my serial port setup.
There is a good chance that the NSH port is complete and functional, but I am not yet able to demonstrate that.
At present, I get nothing coming in the serial RXD line (probably because the pins are configured wrong or I have the MAX232 connected wrong).
</ul>
The basic, port (including the verified examples/ostest configuration) was be released in NuttX-5.13.
A complete port will include drivers for additional AVR32 UC3 devices -- like SPI and USB --- and will be available in a later release,
time permitting.
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Renesas/Hitachi SuperH</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>SH-1 SH7032</b>.
This port uses the Hitachi SH-1 Low-Cost Evaluation Board (SH1_LCEVB1), US7032EVB,
with a GNU arm-elf toolchain* under Linux or Cygwin.
</p>
<ul>
<p>
<b>STATUS:</b>
This port is available as of release 0.3.18 of NuttX. The port is basically complete
and many examples run correctly. However, there are remaining instabilities that
make the port un-usable. The nature of these is not understood; the behavior is
that certain SH-1 instructions stop working as advertised. This could be a silicon
problem, some pipeline issue that is not handled properly by the gcc 3.4.5 toolchain
(which has very limit SH-1 support to begin with), or perhaps with the CMON debugger.
At any rate, I have exhausted all of the energy that I am willing to put into this cool
old processor for the time being.
</p>
</ul>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Renesas M16C/26</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Renesas M16C/26 Microncontroller</b>.
This port uses the Renesas SKP16C26 Starter kit and the GNU M32C toolchain.
The development environment is either Linux or Cygwin under WinXP.
</p>
<p>
<b>STATUS:</b>
Initial source files released in nuttx-0.4.2.
At this point, the port has not been integrated; the target cannot be built
because the GNU <code>m16c-elf-ld</code> link fails with the following message:
</p>
<ul>
<code>m32c-elf-ld: BFD (GNU Binutils) 2.19 assertion fail /home/Owner/projects/nuttx/buildroot/toolchain_build_m32c/binutils-2.19/bfd/elf32-m32c.c:482</code>
</ul>
<p>Where the reference line is:</p>
<ul><pre>
/* If the symbol is out of range for a 16-bit address,
we must have allocated a plt entry. */
BFD_ASSERT (*plt_offset != (bfd_vma) -1);
</pre></ul>
<p>
No workaround is known at this time. This is a show stopper for M16C for
the time being.
</p>
</ul>
</td>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<b>Zilog Z16F</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog z16f Microncontroller</b>.
This port use the Zilog z16f2800100zcog development kit and the Zilog
ZDS-II Windows command line tools.
<ul>
<p>
<b>STATUS:</b>
The initial release of support for the z16f was made available in NuttX version 0.3.7.
</p>
</ul>
</td>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog eZ80Acclaim! Microncontroller</b>.
<ul>
<li>One uses the ZiLOG ez80f0910200kitg development kit, and
<li>The other uses the ZiLOG ez80f0910200zcog-d development kit.
</ul>
Both boards are based on the eZ80F091 part and both use the Zilog ZDS-II
Windows command line tools.
The development environment is Cygwin under WinXP.
<ul>
<p>
<b>STATUS:</b>
Integration and testing of NuttX on the ZiLOG ez80f0910200zcog-d is complete.
The first integrated version was released in NuttX version 0.4.2 (with important early bugfixes
in 0.4.3 and 0.4.4).
As of this writing, that port provides basic board support with a serial console, SPI, and eZ80F91 EMAC driver.
</p>
</ul>
</td>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Zilog Z8Encore!</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Zilog Z8Encore! Microncontroller</b>.
This port uses the either:
</p>
<ul>
<li>Zilog z8encore000zco development kit, Z8F6403 part, or</li>
<li>Zilog z8f64200100kit development kit, Z8F6423 part</li>
</ul>
<p>
and the Zilog ZDS-II Windows command line tools.
The development environment is Cygwin under WinXP.
</p>
<ul>
<p>
<b>STATUS:</b>
This release has been verified only on the ZiLOG ZDS-II Z8Encore! chip simulation
as of nuttx-0.3.9.
</p>
<ul>
</td>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>Z80 Instruction Set Simulator</b>.
This port uses the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain
under Linux or Cygwin (verified using version 2.6.0).
That simulator can be found in the NuttX SVN
<a href="http://nuttx.svn.sourceforge.net/viewvc/nuttx/trunk/misc/sims/z80sim/">here</a>.
<ul>
<p>
<b>STATUS:</b>
This port is complete and stable to the extent that it can be tested
using an instruction set simulator.
</p>
<ul>
</td>
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
<tr>
<td><br></td>
<td><hr></td>
</tr>
<tr>
<td><br></td>
<td>
<p>
<b>XTRS: TRS-80 Model I/III/4/4P Emulator for Unix</b>.
A very similar Z80 port is available for <a href="http://www.tim-mann.org/xtrs.html">XTRS</a>,
the TRS-80 Model I/III/4/4P Emulator for Unix.
That port also uses the <a href="http://sdcc.sourceforge.net/">SDCC</a> toolchain
under Linux or Cygwin (verified using version 2.6.0).
</p>
<ul>
<p>
<b>STATUS:</b>
Basically the same as for the Z80 instruction set simulator.
This port was contributed by Jacques Pelletier.
</p>
<ul>
</td>
</tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Other ports</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
There are partial ports for the TI TMS320DM270 and for MIPS.
</p>
<blockquote>* A highly modified <a href="http://buildroot.uclibc.org/">buildroot</a>
is available that may be used to build a NuttX-compatible ELF toolchain under
Linux or Cygwin. Configurations are available in that buildroot to support ARM,
m68k, m68hc11, m68hc12, and SuperH ports.</blockquote>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="environments"><h1>Development Environments</h1></a>
</td>
</tr>
</table>
<center><table width="90%">
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
The is the most natural development environment for NuttX.
Any version of the GCC/binutils toolchain may be used.
There is a highly modified <a href="http://buildroot.uclibc.org/">buildroot</a>
available for download from the
<a href="http://sourceforge.net/project/showfiles.php?group_id=189573">NuttX SourceForge</a>
page.
This download may be used to build a NuttX-compatible ELF toolchain under Linux or Cygwin.
That toolchain will support ARM, m68k, m68hc11, m68hc12, and SuperH ports.
The buildroot SVN may be accessed in the
<a href="http://nuttx.svn.sourceforge.net/viewvc/nuttx/trunk/misc/buildroot/">NuttX SVN</a>.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
Also very usable is the Linux environment using the
<a href="http://sdcc.sourceforge.net/">SDCC</a> compiler.
The SDCC compiler provides support for the 8051/2, z80, hc08, and other microcontrollers.
The SDCC-based logic is less well exercised and you will likely find some compilation
issues if you use parts of NuttX with SDCC that have not been well-tested.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
This combination works well too.
It works just as well as the native Linux environment except
that compilation and build times are a little longer.
The custom NuttX <a href="http://sourceforge.net/projects/nuttx/files/buildroot/">buildroot</a> referenced above may be build in
the Cygwin environment as well.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
I have never tried this combination, but it would probably work just fine.
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
This is a tougher environment.
In this case, the Windows native toolchain is unaware of the
Cygwin <i>sandbox</i> and, instead, operates in the native Windows environment.
The primary difficulties with this are:
</p>
<ul>
<li>
<b>Paths</b>.
Full paths for the native toolchain must follow Windows standards.
For example, the path <code>/home/my\ name/nuttx/include</code> my have to be
converted to something like <code>'C:\cygwin\home\my name\nuttx\include'</code>
to be usable by the toolchain.
</li>
<p>
Fortunately, this conversion is done simply using the <code>cygpath</code> utility.
</p>
<li>
<b>Symbolic Links</b>
NuttX depends on symbolic links to install platform-specific directories in the build system.
On Linux, true symbolic links are used.
On Cygwin, emulated symbolic links are used.
Unfortunately, for native Windows applications that operate outside of the
Cygwin <i>sandbox</i>, these symbolic links cannot be used.
</li>
<p>
The NuttX make system works around this limitation by copying the platform
specific directories in place.
These copied directories make work a little more complex, but otherwise work well.
</p>
<p><small>
NOTE: In this environment, it should be possible to use the NTFS <code>mklink</code> command to create links.
This should only require a minor modification to the build scripts (see <code>tools/winlink.sh</code> script).
</small></p>
<li>
<b>Dependencies</b>
NuttX uses the GCC compiler's <code>-M</code> option to generate make dependencies. These
dependencies are retained in files called <code>Make.deps</code> throughout the system.
For compilers other than GCC, there is no support for making dependencies in this way.
For Windows native GCC compilers, the generated dependencies are windows paths and not
directly usable in the Cygwin make. By default, dependencies are surpressed for these
compilers as well.
</li>
<p><small>
NOTE: dependencies are suppress by setting the make variable <code>MKDEPS</code> to point
to the do-nothing dependency script, <code>tools/mknulldeps.sh</code>.
Dependencies can be enabled for the Windows native GCC compilers by setting
<code>MKDEPS</code> to point to <code>$(TOPDIR)/tools/mkdeps.sh --winpaths $(TOPDIR)</code>.
</small></p>
At present, only the Zilog Z16F, z8Encore, and eZ80Acclaim ports use a non-GCC native Windows
toolchain(the Zilog ZDS-II toolchain).
Support for Windows native GCC toolchains (CodeSourcery and devkitARM) is currently implemented
for the NXP LPC214x, STMicro STR71x, and Luminary LMS6918 ARM ports.
(but could easily be extended to any other GCC-based platform with a small effort).
</p>
</td>
</tr>
<tr>
<td valign="top"><img height="20" width="20" src="favicon.ico"></td>
<td bgcolor="#5eaee1">
<b>Other Environments?
Windows Native <code>make</code> + Windows Native Toolchain?</b>
</td>
</tr>
<tr>
<td><br></td>
<td>
<p>
The primary environmental dependency of NuttX are (1) GNU make,
(2) bash scripting, and (3) Linux utilities (such as cat, sed, etc.).
If you have other platforms that support GNU make or make
utilities that are compatible with GNU make, then it is very
likely that NuttX would work in that environment as well (with some
porting effort). If GNU make is not supported, then some significant
modification of the Make system would be required.
<p>
<b>GNUWin32</b>.
For example, with suitable make system changes, it should be possible to
use native GNU tools (such as those from
<a href="http://sourceforge.net/projects/gnuwin32/">GNUWin32</a>)
to build NuttX.
However, that environment has not been used as of this writing.
</p>
<p><small>
NOTE: One of the members on the <a href="http://tech.groups.yahoo.com/group/nuttx/">NuttX forum</a>
reported that they successful built NuttX using such a GNUWin32-based, Windows native environment.
They reported that the only necessary change was to the use the NTFS mklink command to create links
(see <code>tools/winlink.sh</code> script).
</small></p>
</td>
</tr>
</table></center>
<table width ="100%">
<tr bgcolor="#e4e4e4">
<td>
<a name="footprint"><h1>Memory Footprint</h1></a>
</td>
</tr>
</table>
The build for this ARM7 target that includes most of the OS features and
a broad range of OS tests. The size of this executable as given by the
Linux <tt>size</tt> command is (3/9/07):
<pre>
text data bss dec hex filename
53272 428 3568 57268 dfb4 nuttx
</pre>
This build for the ARM9 target includes a significant subset of OS
features, a filesystem, Ethernet driver, full TCP/IP, UDP and (minimal)
ICMP stacks (via uIP) and a small network test application: (11/8/07,
configuration netconfig, examples/nettest)
</p>
<pre>
text data bss dec hex filename
<p>
Another build for the ARM9 target includes a minimal OS feature
set, Ethernet driver, full TCP/IP and (minimal) ICMP stacks, and
a small webserver: (11/20/07, configuration uipconfig, examples/uip)
</p>
<pre>
text data bss dec hex filename
52040 72 4148 56260 dbc4 nuttx
</pre>
A reduced functionality OS test for the 8052 target requires only
about 18-19Kb: