Newer
Older
<head>
<title>NuttX Users Manual</title>
<meta name="AUTHOR" content="Gregory Nutt">
</head>
<body background="backgd.gif">
<hr>
<hr>
<center><h1><i>Under Construction</i></h1></center>
<hr>
<hr>
NuttX Operating System
<h1>1.0 <A NAME="Introduction">Introduction</a></h1>
<p>
This manual provides general usage information for the NuttX RTOS from the
perspective of the firmware developer.
<h2>1.1 <a name="overview">Document Overview</a></h2>
<p>
This user's manual is divided into three sections plus a index:
</p>
<ul>
<li>
<b>Section 1.0, <a href="#Introduction">Introduction</a></b>:
This section provides an overview of the NuttX user's manual.
</li>
<li>
<b>Section 2.0, <a href="#OS_Interfaces">OS Interfaces</a></b>:
This section details the program interfaces provided by NuttX.
This section is divided into several paragraphs that describe different groups of OS interfaces:
<ul>
<li>Paragraph 2.1 <a href="#Task_Control">Task Control Interfaces</a></li>
<li>Paragraph 2.2 <a href="#Task_Schedule">Task Scheduling Interfaces</a></li>
<li>Paragraph 2.3 <a href="#Task_Switch">Task Switching Interfaces</a></li>
<li>Paragraph 2.4 <a href="#Message_Queue">Named Message Queue Interfaces</a></li>
<li>Paragraph 2.5 <a href="#Semaphores">Counting Semaphore Interfaces</a></li>
<li>Paragraph 2.6 <a href="#Watchdogs">Watchdog Timer Interfaces</a></li>
<li>Paragraph 2.7 <a href="#ClocksNTimers">Clocks and Timers</a></li>
<li>Paragraph 2.8 <a href="#Signals">Signal Interfaces</a></li>
<li>Paragraph 2.9 <a href="#Pthread">Pthread Interfaces</a></li>
<li>Paragraph 2.10 <a href="#Environ">Environment Variables</a></li>
<li>Paragraph 2.11 <a href="#FileSystem">File System Interfaces</a></li>
<li>Paragraph 2.12 <a href="#Network">Network Interfaces</a></li>
</ul>
</li>
<li>
<b>Section 3.0, <a href="#Data_Structures">OS Data Structures</a></b>:
This section documents the data structures that are used at the NuttX
interface.
</li>
<li>
<a href="#index">Index</a>
</li>
</ul>
<h2>1.2 <a name="scope">Intended Audience and Scope</a></h2>
<p>
The intended audience for this document are firmware developers who are implementing applications on NuttX.
Specifically, this documented is limited to addressing only NuttX RTOS APIs that are available to the application developer.
As such, this document does not focus on any technical details of the organization or implementation of NuttX.
Those technical details are provided in the <a href="NuttxPortingGuide.html">NuttX Porting Guide</a>.
</p>
<p>
Information about configuring and building NuttX is also needed by the application developer.
That information can also be found in the <a href="NuttxPortingGuide.html#configandbuild">NuttX Porting Guide</a>.
</p>
<hr>
<h1>2.0 <A NAME="OS_Interfaces">OS Interfaces</a></h1>
<p>
This section describes each C-callable interface to the NuttX
Operating System. The description of each interface is presented
in the following format:
<p>
<b>Function Prototype:</b> The C prototype of the interface function
<p>
<b>Description:</b> The operation performed by the interface function
<p>
<b>Input Parameters:</b> All input parameters are listed along
<p>
<b>Returned Values:</b> All possible values returned by the interface
function are listed. Values returned as side-effects (through
pointer input parameters or through global variables) will be
addressed in the description of the interface function.
<p>
<b>Assumptions/Limitations:</b> Any unusual assumptions made by
the interface function or any non-obvious limitations to the use
of the interface function will be indicated here.
<p>
<b>POSIX Compatibility:</b> Any significant differences between the
NuttX interface and its corresponding POSIX interface will be noted
NOTE: In order to achieve an independent name space for the NuttX
interface functions, differences in function names and types are
to be expected and will not be identified as differences in these
paragraphs.
NuttX is a flat address OS. As such it does not support <i>processes</i>
in the way that, say, Linux does.
NuttX only supports simple threads running within the same address space.
However, the programming model makes a distinction between <i>tasks</i>
and <i>pthreads</i>:
<li><i>tasks</i> are threads which have a degree of independence
<li><a href="#Pthread"><i>pthreads</i></a> share some resources.
<b>File Descriptors and Streams</b>.
This applies, in particular, in the area of opened file descriptors and streams.
When a task is started using the interfaces in this section, it will be created
with at most three open files.
</p>
</p>
If CONFIG_DEV_CONSOLE is defined, the first three file descriptors (corresponding
to stdin, stdout, stderr) will be duplicated for the the new task.
Since these file descriptors are duplicated, the child task can free close
them or manipulate them in any way without effecting the parent task.
File-related operations (open, close, etc.) within a task will have no effect
on other tasks.
Since the three file descriptors are duplicated, it is also possible to perform
some level of redirection.
</p>
<p>
pthreads, on the other hand, will always share file descriptors with the parent
thread. In this case, file operations will have effect only all pthreads the
were started from the same parent thread.
</p>
The following task control interfaces are provided by Nuttx:
</p>
<ul>
<li><a href="#taskcreate">2.1.1 task_create</a></li>
<li><a href="#taskinit">2.1.2 task_init</a></li>
<li><a href="#taskactivate">2.1.3 task_activate</a></li>
<li><a href="#taskdelete">2.1.4 task_delete</a></li>
<li><a href="#exit">2.1.5 exit</a></li>
<li><a href="#taskrestart">2.1.6 task_restart</a></li>
<li><a href="#getpid">2.1.7 getpid</a></li>
</ul>
int task_create(char *name, int priority, int stack_size, main_t entry, const char *argv[]);
This function creates and activates a new task with a
specified priority and returns its system-assigned ID.
</p>
function of the task.
This function will be called once the C environment has been set up.
The specified function will be called with four arguments.
Should the specified routine return, a call to exit() will automatically be made.
</P>
<p>
Note that an arbitrary number of arguments may be passed to the
spawned functions. The maximum umber of arguments is an OS
configuration parameter (<code>CONFIG_MAX_TASK_ARGS</code>).
</p>
<p>
The arguments are copied (via <code>strdup</code>) so that the
life of the passed strings is not dependent on the life of the
caller to <code>task_create()</code>.
</p>
<p>
The newly created task does not inherit scheduler characteristics
default system priority and with the SCHED_FIFO scheduling
policy. These characteristcs may be modified after the new
task has been started.
</p>
<p>
The newly created task does inherit the first three file
descriptors (corresponding to stdin, stdout, and stderr) and
redirection of standard I/O is supported.
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>name</I>. Name of the new task</LI>
<li><I>priority</I>. Priority of the new task</LI>
<li><I>stack_size</I>. size (in bytes) of the stack needed</LI>
<li><I>entry</I>. Entry point of a new task</LI>
<li><I>argv</I>. A pointer to an array of input parameters. Up to
<code>CONFIG_MAX_TASK_ARG</code> parameters may be provided.
If fewer than <code>CONFIG_MAX_TASK_ARG</code> parameters are
passed, the list should be terminated with a NULL argv[] value.
If no parameters are required, argv may be NULL.
Returns the non-zero task ID of the new task or
ERROR if memory is insufficient or the task cannot be
created (errno is not set).
</LI>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
int taskSpawn(char *name, int priority, int options, int stackSize, FUNCPTR entryPt,
int arg1, int arg2, int arg3, int arg4, int arg5,
int arg6, int arg7, int arg8, int arg9, int arg10);
The NuttX task_create() differs from VxWorks' taskSpawn() in the
following ways:
</p>
<ul>
<li>Interface name
<li>Various differences in types of arguments
<li>There is no options arguement.
<li>A variable number of parameters can be passed to a task (VxWorks supports ten).
</ul>
STATUS task_init(_TCB *tcb, char *name, int priority, uint32 *stack, uint32 stack_size,
maint_t entry, const char *argv[]);
in preparation for starting a new thread. It performs a subset
of the functionality of <code>task_create()</code> (see above).
Unlike task_create(), task_init() does not activate the task.
This must be done by calling task_activate().
</P>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>tcb</I>. Address of the new task's TCB
<li><I>name</I>. Name of the new task (not used)
<li><I>priority</I>. Priority of the new task
<li><I>stack</I>. Start of the pre-allocated stack
<li><I>stack_size</I>. size (in bytes) of the pre-allocated stack
<li><I>entry</I>. Entry point of a new task
<li><I>argv</I>. A pointer to an array of input parameters. Up to
<code>CONFIG_MAX_TASK_ARG</code> parameters may be provided.
If fewer than <code>CONFIG_MAX_TASK_ARG</code> parameters are
passed, the list should be terminated with a NULL argv[] value.
If no parameters are required, argv may be NULL.
<ul>
<li><p>OK, or ERROR if the task cannot be initialized.</P>
<p>This function can only failure is it is unable to assign
</ul>
<p>
<b>Assumptions/Limitations:</b>
<ul>
<li>task_init() is provided to support internal OS functionality. It is
<b>not recommended</b> for normal usage. task_create() is the preferred
</ul>
<p>
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
STATUS taskInit(WIND_TCB *pTcb, char *name, int priority, int options, uint32 *pStackBase, int stackSize,
FUNCPTR entryPt, int arg1, int arg2, int arg3, int arg4, int arg5,
int arg6, int arg7, int arg8, int arg9, int arg10);
The NuttX task_init() differs from VxWorks' taskInit() in the
following ways:
</p>
<ul>
<li>Interface name
<li>Various differences in types or arguments
<li>There is no options argument.
<li>A variable number of parameters can be passed to a task (VxWorks supports ten).
</ul>
<p>
<b>Description:</b> This function activates tasks created by task_init().
Without activation, a task is ineligible for execution by the
scheduler.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>tcb</I>. The TCB for the task for the task (same as the
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>OK, or ERROR if the task cannot be activated (errno is not set).
</ul>
<p>
<b>Assumptions/Limitations:</b>
<ul>
<li>task_activate() is provided to support internal OS functionality. It is
<b>not recommended</b> for normal usage. task_create() is the preferred
</ul>
<p>
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
The NuttX task_activate() differs from VxWorks' taskActivate() in the
following ways:
</p>
<ul>
<li>Function name
<li>With VxWork's taskActivate, the pid argument is supposed to be
<p>
<b>Description:</b> This function causes a specified task to cease
to exist -- its stack and TCB will be deallocated. This function
is the companion to task_create().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>pid</I>. The task ID of the task to delete. An ID of
<p>
<b>Returned Values:</b>
<ul>
<li>OK, or ERROR if the task cannot be deleted.
This function can fail if the provided pid does not correspond to a task (errno is not set)
task_delete() must be used with caution: If the task holds resources
(for example, allocated memory or semaphores needed by other tasks), then
task_delete() can strand those resources.
The NuttX task_delete() differs from VxWorks' taskDelete() in
the following ways:
</p>
<ul>
<li>No support is provided for calling the tasks deletion routines
#include <sched.h>
void exit( int code );
#include <nuttx/unistd.h>
void _exit( int code );
<p>
<b>Description:</b> This function causes the calling task to cease
to exist -- its stack and TCB will be deallocated. exit differs from
_exit in that it flushs streams, closes file descriptors and will
execute any function registered with atexit().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>code</I>. (ignored)
</ul>
<p>
<b>POSIX Compatibility:</b> This is equivalent to the ANSI interface:
The NuttX exit() differs from ANSI exit() in the following ways:
</p>
<p>
<b>Description:</b> This function "restarts" a task.
The task is first terminated and then reinitialized with same
ID, priority, original entry point, stack size, and parameters
it had when it was first started.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>pid</I>. The task ID of the task to delete. An ID of
OK, or ERROR if the task ID is invalid or the task could
not be restarted.
This function can fail if:
(1) A pid of zero or the pid of the calling task is provided (functionality not implemented)
(2) The pid is not associated with any task known to the system.
</LI>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> This is a NON-POSIX interface.
The NuttX task_restart() differs from VxWorks' taskRestart() in the following ways:
</p>
<ul>
<li>Restart of the currently running task is not supported.
<li>The VxWorks description says that the ID, priority, etc. take
<p>
<b>Description:</b> This function returns the task ID of the
calling task. The task ID will be invalid if called at the interrupt
level.
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>The task ID of the calling task.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b>
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
<p>
By default, NuttX performs strict priority scheduling: Tasks of higher
priority have exclusive access to the CPU until they become blocked.
At that time, the CPU is available to tasks of lower priority.
Tasks of equal priority are scheduled FIFO.
</p>
<p>
Optionally, a Nuttx task or thread can be configured with round-robin
scheduler. This is similar to priority scheduling <i>except</i> that
tasks with equal priority and share CPU time via <i>time-slicing</i>.
The time-slice interval is a constant determined by the configuration
setting <code>CONFIG_RR_INTERVAL</code>.
</p>
<p>
The OS interfaces described in the following paragraphs provide
a POSIX- compliant interface to the NuttX scheduler:
</p>
<ul>
<li><a href="#schedsetparam">2.2.1 sched_setparam</a></li>
<li><a href="#schedgetparam">2.2.2 sched_getparam</a></li>
<li><a href="#schedsetscheduler">2.2.3 sched_setscheduler</a></li>
<li><a href="#setgetscheduler">2.2.4 sched_getscheduler</a></li>
<li><a href="#sched_yield">2.2.5 sched_yield</a></li>
<li><a href="#schedgetprioritymax">2.2.6 sched_get_priority_max</a></li>
<li><a href="#schedgetprioritymin">2.2.7 sched_get_priority_min</a></li>
<li><a href="#schedgetrrinterval">2.2.8 sched_get_rr_interval</a></li>
</ul>
int sched_setparam(pid_t pid, const struct sched_param *param);
</pre>
<p>
This function sets the priority of the task specified by pid input parameter.
</p>
<p>
NOTE: Setting a task's priority to the same value has the similar
effect to <code>sched_yield()</code>: The task will be moved to after all
other tasks with the same priority.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>pid</code>.
The task ID of the task.
If <code>pid</code> is zero, the priority of the calling task is set.
</li>
<li>
<code>param</code>.
A structure whose member <code>sched_priority</code> is the integer priority.
The range of valid priority numbers is from <code>SCHED_PRIORITY_MIN</code> through <code>SCHED_PRIORITY_MAX</code>.
</li>
</ul>
<p>
<b>Returned Values:</b>
On success, sched_setparam() returns 0 (OK).
On error, -1 (ERROR) is returned, and<code>errno</code>is set appropriately.
<li>
<code>EINVAL</code>.
The parameter <code>param</code> is invalid or does not make sense for the current scheduling policy.
</li>
<li>
<code>EPERM</code>.
The calling task does not have appropriate privileges.
</li>
<li>
<code>ESRCH</code>.
The task whose ID is <code>pid</code> could not be found.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
Comparable to the POSIX interface of the same name.
Differences from the full POSIX implementation include:
</p>
<ul>
<li>The range of priority values for the POSIX call is 0 to 255.</li>
</ul>
#include <sched.h>
int sched_getparam (pid_t pid, struct sched_param *param);
<p>
<b>Description:</b> This function gets the scheduling priority
<p>
<b>Input Parameters:</b>
<ul>
<li>
<code>pid</code>. The task ID of the task.
If pid is zero, the priority of the calling task is returned.
</li>
<li>
<code>param</code>.
A structure whose member <code>sched_priority</code> is the integer priority.
The task's priority is copied to the <code>sched_priority</code> element of this structure.
</li>
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) if successful, otherwise -1 (ERROR).
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="schedsetscheduler">2.2.3 sched_setscheduler</a></H3>
#include <sched.h>
int sched_setscheduler (pid_t pid, int policy, const struct sched_param *param);
<i>sched_setscheduler()</i> sets both the scheduling policy
and the priority for the task identified by pid.
If pid equals zero, the scheduler of the calling
thread will be set.
The parameter 'param' holds the priority of the thread under the new policy.
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li>
<I>pid</I>. The task ID of the task. If pid is zero, the
</li>
<li>
<I>policy</I>. Scheduling policy requested (either SCHED_FIFO or SCHED_RR).
</li>
<li>
<code>param<code>. A structure whose member sched_priority is the
integer priority. The range of valid priority numbers is from
SCHED_PRIORITY_MIN through SCHED_PRIORITY_MAX.
error, ERROR (-1) is returned, and<code>errno</code>is set appropriately:
</p>
<ul>
<li>EINVAL The scheduling policy is not one of the
recognized policies.</li>
<li>ESRCH The task whose ID is pid could not be found.</li>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
pid equals zero, the policy of the calling process will
be retrieved.
*
* Inputs:
*
* Return Value:
This function returns the current scheduling
policy.
The task ID of the task to query.
If pid is zero, the calling task is queried.
</LI>
On success, <i>sched_getscheduler()</i> returns the policy for
the task (either SCHED_FIFO or SCHED_RR).
On error, ERROR (-1) is returned, and<code>errno</code>is set appropriately:
<ul>
<li>ESRCH The task whose ID is pid could not be found.</li>
</ul>
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<p>
<b>Description:</b> This function forces the calling task to give
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR)
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="schedgetprioritymax">2.2.6 sched_get_priority_max</a></H3>
#include <sched.h>
int sched_get_priority_max (int policy)
<p>
<b>Description:</b> This function returns the value of the highest
<p>
<b>Input Parameters:</b>
<ul>
<li><I>policy</I>. Scheduling policy requested.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>The maximum priority value or -1 (ERROR).
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="schedgetprioritymin">2.2.7 sched_get_priority_min</a></H3>
#include <sched.h>
int sched_get_priority_min (int policy);
<p>
<b>Description:</b> This function returns the value of the lowest
<p>
<b>Input Parameters:</b>
<ul>
<li><I>policy</I>. Scheduling policy requested.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>The minimum priority value or -1 (ERROR)
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="schedgetrrinterval">2.2.8 sched_get_rr_interval</a></H3>
#include <sched.h>
int sched_get_rr_interval (pid_t pid, struct timespec *interval);
<i>sched_rr_get_interval()</i> writes the timeslice interval
for task identified by <i>pid</i> into the timespec structure
pointed to by <i>interval</i>. If pid is zero, the timeslice
for the calling process is written into 'interval. The
identified process should be running under the SCHED_RR
scheduling policy.'
</p>
<ul>
<li><I>pid</I>. The task ID of the task. If pid is zero, the
<li><I>interval</I>. A structure used to return the time slice.
</ul>
error, ERROR (-1) is returned, and<code>errno</code>is set to:
<ul>
<li>EFAULT Cannot copy to interval</LI>
<li>EINVAL Invalid pid.</LI>
<li>ENOSYS The system call is not yet implemented.</LI>
<li>ESRCH The process whose ID is pid could not be found.</LI>
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li><a href="#schedlock">2.3.1 sched_lock</a></li>
<li><a href="#schedunlock">2.3.2 sched_unlock</a></li>
<li><a href="#schedlockcount">2.3.3 sched_lockcount</a></li>
</ul>
<H3><a name="schedlock">2.3.1 sched_lock</a></H3>
<p>
<b>Description:</b> This function disables context switching by
Disabling addition of new tasks to the ready-to-run task list.
The task that calls this function will be the only task that is
allowed to run until it either calls sched_unlock (the appropriate
number of times) or until it blocks itself.
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
<p>
<b>Description:</b> This function decrements the preemption lock
count. Typically this is paired with sched_lock() and concludes
a critical section of code. Preemption will not be unlocked until
sched_unlock() has been called as many times as sched_lock().
When the lockCount is decremented to zero, any tasks that were
eligible to preempt the current task will execute.
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
<p>
<b>Description:</b> This function returns the current value of
the lockCount. If zero, preemption is enabled; if non-zero, this
value indicates the number of times that sched_lock() has been called
on this thread of execution.
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>The current value of the lockCount.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> None.
<hr>
<H2>2.4 <A NAME="Message_Queue">Named Message Queue Interfaces</a></H2>
<p>
NuttX supports POSIX named message queues for intertask communication.
Any task may send or receive messages on named message queues.
Interrupt handlers may send messages via named message queues.
</p>
<ul>
<li><a href="#mqopen">2.4.1 mq_open</a></li>
<li><a href="#mqclose">2.4.2 mq_close</a></li>
<li><a href="#mqunlink">2.4.3 mq_unlink</a></li>
<li><a href="#mqsend">2.4.4 mq_send</a></li>
<li><a href="#mqtimedsend">2.4.5 mq_timedsend</a></li>
<li><a href="#mqreceive">2.4.6 mq_receive</a></li>
<li><a href="#mqtimedreceive">2.4.7 mq_timedreceive</a></li>
<li><a href="#mqnotify">2.4.8 mq_notify</a></li>
<li><a href="#mqsetattr">2.4.9 mq_setattr</a></li>
<li><a href="#mqgetattr">2.4.10 mq_getattr</a></li>
#include <mqueue.h>
mqd_t mq_open( const char *mqName, int oflags, ... );
<p>
<b>Description:</b> This function establish a connection between
a named message queue and the calling task. After a successful
call of mq_open(), the task can reference the message queue using
the address returned by the call. The message queue remains usable
until it is closed by a successful call to mq_close().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqName</I>. Name of the queue to open
<li><I>oflags</I>. Open flags. These may be any combination of:
<ul>
<li><I>O_RDONLY</I>. Open for read access.
<li><I>O_WRONLY</I>. Open for write access.
<li><I>O_RDWR</I>. Open for both read & write access.
<li><I>O_CREAT</I>. Create message queue if it does not already
<li><I>O_EXCL</I>. Name must not exist when opened.
<li><I>O_NONBLOCK</I>. Don't wait for data.
</ul>
When the O_CREAT flag is specified, POSIX requires that a third
and fourth parameter be supplied:
<ul>
<li><I>mode</I>. The mode parameter is of type mode_t. In the POSIX
specification, this mode value provides file permission bits for the
message queue. This parameter is required but not used in the present
implementation.
<li><I>attr</I>. A pointer to an mq_attr that is provided to initialize.
the message queue. If attr is NULL, then the messages queue is created
with implementation-defined default message queue attributes. If attr is
non-NULL, then the message queue mq_maxmsg attribute is set to the
corresponding value when the queue is created. The mq_maxmsg attribute
determines the maximum number of messages that can be queued before
addition attempts to send messages on the message queue fail or cause the
sender to block; the mq_msgsize attribute determines the maximum size of a
message that can be sent or received. Other elements of attr are ignored
(i.e, set to default message queue attributes).
</ul>
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>A message queue descriptor or -1 (ERROR)
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX interface
of the same name.
Differences from the full POSIX implementation include:
<ul>
<li>The mq_msgsize attributes determines the maximum size of a message that
may be sent or received. In the present implementation, this maximum
message size is limited at 22 bytes.
<p>
<b>Description:</b> This function is used to indicate that the
calling task is finished with the specified message queued mqdes.
The mq_close() deallocates any system resources allocated by the
system for use by this task for its message queue.
If the calling task has attached a notification request to the message
queue via this <I>mqdes</I> (see mq_notify()), this attachment will be
removed and the message queue is available for another task to attach
for notification.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqdes</I>. Message queue descriptor.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) if the message queue is closed successfully, otherwise,
<li>The behavior of a task that is blocked on either a <code>mq_send()</code> or
<code>mq_receive()</code> is undefined when <code>mq_close()</code> is called.
<li>The result of using this message queue descriptor after successful
</ul>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX interface
#include <mqueue.h>
int mq_unlink( const char *mqName );
<p>
<b>Description:</b> This function removes the message queue named
by "mqName." If one or more tasks have the message queue
open when mq_unlink() is called, removal of the message queue
is postponed until all references to the message queue have been
closed.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqName</I>. Name of the message queue
</ul>
<p>
<b>Returned Values:</b> None.
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
int mq_send(mqd_t mqdes, const void *msg, size_t msglen, int prio);
</pre>
<b>Description:</b>
This function adds the specified message, <code>msg</code>,
to the message queue, <code>mqdes</code>.
The <code>msglen</code> parameter specifies the length of the message in bytes pointed to by <code>msg</code>.
This length must not exceed the maximum message length from the <code>mq_getattr()</code>.
</p>
If the message queue is not full, <code>mq_send()</code> will place the <code>msg</code>
in the message queue at the position indicated by the <code>prio</code> argument.
Messages with higher priority will be inserted before lower priority messages
The value of <code>prio</code> must not exceed <code>MQ_PRIO_MAX</code>.
</p>
If the specified message queue is full and <code>O_NONBLOCK</code> is not
set in the message queue, then <code>mq_send()</code> will block until space
becomes available to the queue the message.
</p>
If the message queue is full and <code>NON_BLOCK</code> is set, the message
is not queued and <code>ERROR</code> is returned.
</p>
<b>Input Parameters:</b>
</p>
<li><code>mqdes</code>. Message queue descriptor.</li>
<li><code>msg</code>. Message to send.</li>
<li><code>msglen</code>. The length of the message in bytes.</li>
<li><code>prio</code>. The priority of the message.</li>
<b>Returned Values:</b>
On success, <code>mq_send()</code> returns 0 (<code>OK</code>);
on error, -1 (<code>ERROR</code>) is returned, with <code>errno</code> set
to indicate the error:
</p>
<li>
<code>EAGAIN</code>.
The queue was empty, and the <code>O_NONBLOCK</code> flag was set for the message queue description referred to by <code>mqdes</code>.
</li>
<li>
<code>EINVAL</code>.
Either <code>msg</code> or <code>mqdes</code> is <code>NULL</code> or the value of <code>prio</code> is invalid.
</li>
<li>
<code>EPERM</code>.
Message queue opened not opened for writing.
</li>
<li>
<code>EMSGSIZE</code>.
<code>msglen</code> was greater than the <code>maxmsgsize</code> attribute of the message queue.
</li>
<li>
<code>EINTR</code>.
The call was interrupted by a signal handler.
</li>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
<h3><a name="mqtimedsend">mq_timedsend</a></h3>
<b>Function Prototype:</b>
</p>
<pre>
#include <mqueue.h>
int mq_timedsend(mqd_t mqdes, const char *msg, size_t msglen, int prio,
const struct timespec *abstime);
</pre>
<p>
<b>Description:</b>
This function adds the specified message, <code>msg</code>,
to the message queue, <code>mqdes</code>.
The <code>msglen</code> parameter specifies the length of the message in bytes pointed to by <code>msg</code>.
This length must not exceed the maximum message length from the <code>mq_getattr()</code>.
</p>
<p>
If the message queue is not full, <code>mq_timedsend()</code> will place the <code>msg</code>
in the message queue at the position indicated by the <code>prio</code> argument.
Messages with higher priority will be inserted before lower priority messages
The value of <code>prio</code> must not exceed <code>MQ_PRIO_MAX</code>.
</p>
<p>
If the specified message queue is full and <code>O_NONBLOCK</code> is not
set in the message queue, then <code>mq_send()</code> will block until space
becomes available to the queue the message or until a timeout occurs.
</p>
<p>
<code>mq_timedsend()</code> behaves just like <code>mq_send()</code>, except
that if the queue is full and the <code>O_NONBLOCK</code> flag is not enabled
for the message queue description, then <code>abstime</code> points to a
structure which specifies a ceiling on the time for which the call will block.
This ceiling is an absolute timeout in seconds and nanoseconds since the
Epoch (midnight on the morning of 1 January 1970).
</p>
<p>
If the message queue is full, and the timeout has already expired by the time
of the call, <code>mq_timedsend()<code> returns immediately.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>mqdes</code>. Message queue descriptor.</li>
<li><code>msg</code>. Message to send.</li>
<li><code>msglen</code>. The length of the message in bytes.</li>
<li><code>prio</code>. The priority of the message.</li>
</ul>
<p>
<b>Returned Values:</b>
On success, <code>mq_send()</code> returns 0 (<code>OK</code>);
on error, -1 (<code>ERROR</code>) is returned, with <code>errno</code> set
to indicate the error:
</p>
<ul>
<li>
<code>EAGAIN</code>.
The queue was empty, and the <code>O_NONBLOCK</code> flag was set for the message queue description referred to by <code>mqdes</code>.
</li>
<li>
<code>EINVAL</code>.
Either <code>msg</code> or <code>mqdes</code> is <code>NULL</code> or the value of <code>prio</code> is invalid.
</li>
<li>
<code>EPERM</code>.
Message queue opened not opened for writing.
</li>
<li>
<code>EMSGSIZE</code>.
<code>msglen</code> was greater than the <code>maxmsgsize</code> attribute of the message queue.
</li>
<li>
<code>EINTR</code>.
The call was interrupted by a signal handler.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<h3><a name="mqreceive">2.4.5 mq_receive</a></h3>
<b>Function Prototype:</b>
</p>
<pre>
ssize_t mq_receive(mqd_t mqdes, void *msg, size_t msglen, int *prio);
<b>Description:</b>
This function receives the oldest of the highest priority messages from the message
queue specified by <code>mqdes</code>.
If the size of the buffer in bytes, <code>msgLen</code>, is less than the
<code>mq_msgsize</code> attribute of the message queue, <code>mq_receive()</code> will
return an error.
Otherwise, the selected message is removed from the queue and copied to <code>msg</code>.
</p>
If the message queue is empty and <code>O_NONBLOCK</code> was not set, <code>mq_receive()</code>
will block until a message is added to the message queue.
If more than one task is waiting to receive a message, only the task with the highest
priority that has waited the longest will be unblocked.
</p>
If the queue is empty and <code>O_NONBLOCK</code> is set, <code>ERROR</code> will be returned.
</p>
<b>Input Parameters:</b>
</p>
<li><code>mqdes</code>. Message Queue Descriptor.</li>
<li><code>msg</code>. Buffer to receive the message.</li>
<li><code>msglen</code>. Size of the buffer in bytes.</li>
<li><code>prio</code>. If not NULL, the location to store message priority.
<b>Returned Values:</b>.
One success, the length of the selected message in bytes is returned.
On failure, -1 (<code>ERROR</code>) is returned and the <code>errno</code> is set appropriately:
</p>
<li>
<code>EAGAIN</code>
The queue was empty and the <code>O_NONBLOCK</code> flag was set for the message queue description referred to by <code>mqdes</code>.
</li>
<li>
<code>EPERM</code>
Message queue opened not opened for reading.
</li>
<li>
<code>EMSGSIZE</code>
<code>msglen</code> was less than the <code>maxmsgsize</code> attribute of the message queue.
</li>
<li>
<code>EINTR</code>
The call was interrupted by a signal handler.
</li>
<li>
<code>EINVAL</code>
Invalid <code>msg</code> or <code>mqdes</code>
</li>
<b>Assumptions/Limitations:</b>
</p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
<h3><a name="mqtimedreceive">2.4.6 mq_timedreceive</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <mqueue.h>
ssize_t mq_timedreceive(mqd_t mqdes, void *msg, size_t msglen,
int *prio, const struct timespec *abstime);
</pre>
<p>
<b>Description:</b>
This function receives the oldest of the highest priority messages from the message
queue specified by <code>mqdes</code>.
If the size of the buffer in bytes, <code>msgLen</code>, is less than the
<code>mq_msgsize</code> attribute of the message queue, <code>mq_timedreceive()</code> will
return an error.
Otherwise, the selected message is removed from the queue and copied to <code>msg</code>.
</p>
<p>
If the message queue is empty and <code>O_NONBLOCK</code> was not set, <code>mq_timedreceive()</code>
will block until a message is added to the message queue (or until a timeout occurs).
If more than one task is waiting to receive a message, only the task with the highest
priority that has waited the longest will be unblocked.
</p>
<p>
<code>mq_timedreceive()</code> behaves just like <code>mq_receive()<code>, except
that if the queue is empty and the <code>O_NONBLOCK<c/ode> flag is not enabled
for the message queue description, then <code>abstime</code> points to a structure
which specifies a ceiling on the time for which the call will block.
This ceiling is an absolute timeout in seconds and nanoseconds since the Epoch
(midnight on the morning of 1 January 1970).
</p>
<p>
If no message is available, and the timeout has already expired by the time of
the call, <code>mq_timedreceive()</code> returns immediately.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>mqdes</code>. Message Queue Descriptor.</li>
<li><code>msg</code>. Buffer to receive the message.</li>
<li><code>msglen</code>. Size of the buffer in bytes.</li>
<li><code>prio</code>. If not NULL, the location to store message priority.
<li><code>abstime</code>. The absolute time to wait until a timeout is declared.
</ul>
<p>
<b>Returned Values:</b>.
One success, the length of the selected message in bytes is returned.
On failure, -1 (<code>ERROR</code>) is returned and the <code>errno</code> is set appropriately:
</p>
<ul>
<li>
<code>EAGAIN</code>:
The queue was empty and the <code>O_NONBLOCK</code> flag was set for the message queue description referred to by <code>mqdes</code>.
</li>
<li>
<code>EPERM</code>:
Message queue opened not opened for reading.
</li>
<li>
<code>EMSGSIZE</code>:
<code>msglen</code> was less than the <code>maxmsgsize</code> attribute of the message queue.
</li>
<li>
<code>EINTR</code>:
The call was interrupted by a signal handler.
</li>
<li>
<code>EINVAL</code>:
Invalid <code>msg</code> or <code>mqdes</code> or <code>abstime</code>
</li>
<li>
<code>ETIMEDOUT</code>:
The call timed out before a message could be transferred.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<h3><a name="mqnotify">2.4.7 mq_notify</a></h3>
int mq_notify(mqd_t mqdes, const struct sigevent *notification);
</pre>
<p>
<b>Description:</b> If the "notification" input parameter
is not NULL, this function connects the task with the message queue such
that the specified signal will be sent to the task whenever the message
changes from empty to non-empty. One notification can be attached
to a message queue.
If "notification" is NULL, the attached notification
is detached (if it was held by the calling task) and the queue
is available to attach another notification.
When the notification is sent to the registered task, its registration
will be removed. The message queue will then be available for
registration.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqdes</I>. Message queue descriptor
<li><I>notification</I>. Real-time signal structure containing:
<ul>
<li><I>sigev_notify</I>. Should be osSIGEV_SIGNAL (but actually
<li><I>sigev_signo</I>. The signo to use for the notification
<li><I>sigev_value</I>. Value associated with the signal
</ul>
</ul>
<p>
<b>Returned Values:</b> None.
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX interface
of the same name.
Differences from the full POSIX implementation include:
<ul>
<li>The notification signal will be sent to the registered task even if
another task is waiting for the message queue to become non-empty. This is
inconsistent with the POSIX specification which states, "If a process
has registered for notification of message arrival at a message queue and
some process is blocked in <I>mq_receive</I> waiting to receive a message
when a message arrives at the queue, the arriving message shall satisfy the
appropriate <I>mq_receive()</I> ... The resulting behavior is as if the
message queue remains empty, and no notification shall be sent."
<H3><a name="mqsetattr">2.4.8 mq_setattr</a></H3>
#include <mqueue.h>
int mq_setattr( mqd_t mqdes, const struct mq_attr *mqStat,
struct mq_attr *oldMqStat);
<p>
<b>Description:</b> This function sets the attributes associated
with the specified message queue "mqdes." Only the "O_NONBLOCK"
bit of the "mq_flags" can be changed.
If "oldMqStat" is non-null, mq_setattr() will store
the previous message queue attributes at that location (just as
would have been returned by mq_getattr()).
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqdes</I>. Message queue descriptor
<li><I>mqStat</I>. New attributes
<li><I>oldMqState</I>. Old attributes
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) if attributes are set successfully, otherwise -1
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="mqgetattr">2.4.9 mq_getattr</a></H3>
#include <mqueue.h>
int mq_getattr( mqd_t mqdes, struct mq_attr *mqStat);
<p>
<b>Description:</b> This functions gets status information and
<p>
<b>Input Parameters:</b>
<ul>
<li><I>mqdes</I>. Message queue descriptor
<li><I>mqStat</I>. Buffer in which to return attributes. The returned
<ul>
<li><I>mq_maxmsg</I>. Max number of messages in queue.
<li><I>mq_msgsize</I>. Max message size.
<li><I>mq_flags</I>. Queue flags.
<li><I>mq_curmsgs</I>. Number of messages currently in queue.
</ul>
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) if attributes provided, -1 (ERROR) otherwise.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H2>2.5 <A NAME="Semaphores">Counting Semaphore Interfaces</a></H2>
<p>
<b>Semaphores</b>. Semaphores are the basis for
synchronization and mutual exclusion in NuttX. NuttX supports
POSIX semaphores.
</p>
<p>
Semaphores are the preferred mechanism for gaining exclusive access to a
resource. sched_lock() and sched_unlock() can also be used for this purpose.
However, sched_lock() and sched_unlock() have other undesirable side-affects
in the operation of the system: sched_lock() also prevents higher-priority
tasks from running that do not depend upon the semaphore-managed resource
and, as a result, can adversely affect system response times.
</p>
<p>
<b>Priority Inversion</b>. Proper use of semaphores avoids the issues of
sched_lock(). However, consider the following example:
<OL>
<li>Some low-priority task, <I>Task C</I>, acquires a semphore in order to
<li><I>Task C</I> is suspended to allow some high-priority task,</li>
<li><I>Task A</I> attempts to acquire the semaphore held by <I>Task C</I> and
gets blocked until <I>Task C</I> relinquishes the semaphore.</li>
<li><I>Task C</I> is allowed to execute again, but gets suspended by some
medium-priority <I>Task B</I>.</li>
</OL>
<p>
At this point, the high-priority <I>Task A</I> cannot execute until
<I>Task B</I> (and possibly other medium-priority tasks) completes and until
<I>Task C</I> relinquishes the semaphore. In effect, the high-priority task,
<I>Task A</I> behaves as though it were lower in priority than the
low-priority task, <I>Task C</I>! This phenomenon is called <I>priority
inversion</I>.
</p>
<p>
Some operating systems avoid priority inversion by <I>automatically</I>
increasing the priority of the low-priority <I>Task C</I> (the operable
buzz-word for this behavior is <I>priority inheritance</I>). NuttX does not
support this behavior. As a consequence, it is left to the designer to
provide implementations that will not suffer from priority inversion.
The designer may, as examples:
</p>
<ul>
<li>Implement all tasks that need the semphore-managed resources at the
<li>Boost the priority of the low-priority task before the semaphore is
<p>
POSIX semaphore interfaces:
</p>
<ul>
<li><a href="#seminit">2.5.1 sem_init</a></li>
<li><a href="#semdestroy">2.5.2 sem_destroy</a></li>
<li><a href="#semopen">2.5.3 sem_open</a></li>
<li><a href="#semclose">2.5.4 sem_close</a></li>
<li><a href="#semunlink">2.5.5 sem_unlink</a></li>
<li><a href="#semwait">2.5.6 sem_wait</a></li>
<li><a href="#semtrywait">2.5.7 sem_trywait</a></li>
<li><a href="#sempost">2.5.8 sem_post</a></li>
<li><a href="#semgetvalue">2.5.9 sem_getvalue</a></li>
</ul>
<H3><a name="seminit">2.5.1 sem_init</a></H3>
#include <semaphore.h>
int sem_init ( sem_t *sem, int pshared, unsigned int value );
<p>
<b>Description:</b> This function initializes the UN-NAMED semaphore
sem. Following a successful call to sem_init(), the semaphore
may be used in subsequent calls to sem_wait(), sem_post(), and
sem_trywait(). The semaphore remains usable until it is destroyed.
Only <I>sem</I> itself may be used for performing synchronization. The
result of referring to copies of <I>sem</I> in calls to <I>sem_wait()</I>,
<I>sem_trywait()</I>, <I>sem_post()</I>, and <I>sem_destroy()</I>, is
not defined.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore to be initialized
<li><I>pshared</I>. Process sharing (not used)
<li><I>value</I>. Semaphore initialization value
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
#include <semaphore.h>
int sem_destroy ( sem_t *sem );
<p>
<b>Description:</b> This function is used to destroy the un-named semaphore
indicated by <I>sem</I>. Only a semaphore that was created using
<I>sem_init()</I> may be destroyed using <I>sem_destroy()</I>. The effect
of calling <I>sem_destroy()</I> with a named semaphore is undefined. The
effect of subsequent use of the semaphore <I>sem</I> is undefined until
<I>sem</I> is re-initialized by another call to <I>sem_init()</I>.
The effect of destroying a semaphore upon which other tasks are currently
blocked is undefined.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore to be destroyed.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
#include <semaphore.h>
sem_t *sem_open ( const char *name, int oflag, ...);
<p>
<b>Description:</b> This function establishes a connection between
named semaphores and a task. Following a call to sem_open() with
the semaphore name, the task may reference the semaphore associated
with name using the address returned by this call. The semaphore
may be used in subsequent calls to sem_wait(), sem_trywait(),
and sem_post(). The semaphore remains usable until the semaphore
is closed by a successful call to sem_close().
If a task makes multiple calls to sem_open() with the same name,
then the same semaphore address is returned (provided there have
been no calls to sem_unlink()).
<p>
<b>Input Parameters:</b>
<ul>
<li><I>name</I>. Semaphore name
<li><I>oflag</I>. Semaphore creation options. This may one of
<ul>
<li><I>oflag</I> = 0: Connect to the semaphore only if it already
NOTE: When the O_CREAT flag is specified, POSIX requires that a third
and fourth parameter be supplied:
This parameter is required but not used in the present
implementation.
<li><I>value</I>. The value parameter is type unsigned int. The semaphore
is created with an initial value of <I>value</I>. Valid initial values for
semaphores must be less than or equal to <I>SEM_VALUE_MAX</I> (defined in
<CODE>include/limits.h</CODE>).
</ul>
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>A pointer to sem_t or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<ul>
<li>Treatment of links/connections is highly simplified. It is
<p>
<b>Description:</b> This function is called to indicate that the
calling task is finished with the specified named semaphore, sem.
The sem_close() deallocates any system resources allocated by
the system for this named semaphore.
If the semaphore has not been removed with a call to sem_unlink(),
then sem_close() has no effect on the named semaphore. However,
when the named semaphore has been fully unlinked, the semaphore
will vanish when the last task closes it.
Care must be taken to avoid risking the deletion of a semaphore
that another calling task has already locked.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<ul>
<li>Care must be taken to avoid deletion of a semaphore that another task
<li>sem_close() must not be called with an un-named semaphore.
</ul>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
#include <semaphore.h>
int sem_unlink ( const char *name );
<p>
<b>Description:</b> This function will remove the semaphore named by the
input name parameter. If one or more tasks have the semaphore named by
name oepn when sem_unlink() is called, destruction of the semaphore will
be postponed until all references have been destroyed by calls to
sem_close().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>name</I>. Semaphore name
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<ul>
<li>Care must be taken to avoid deletion of a semaphore that another task
<li>sem_unlink() must not be called with an un-named semaphore.
</ul>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the full POSIX implementation include:
<ul>
<li>Treatment of links/connections is highly simplified. It is
<li>Calls to sem_open() to re-create or re-connect to the semaphore may
refer to the same semaphore; POSIX specifies that a new semaphore with the
same name should be created after sem_unlink() is called.
<p>
<b>Description:</b> This function attempts to lock the semaphore
referenced by sem. If the semaphore as already locked by another
task, the calling task will not return until it either successfully acquires
the lock or the call is interrupted by a signal.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) is unsuccessful
</ul>
<p>
If <I>sem_wait</I> returns -1 (ERROR) then the cause of the failure
will be indicated by the thread-specific <I>errno</I> value (a pointer
to this value can be obtained using <I>get_errno_ptr()</I>). The following
lists the possible values for <I>errno</I>:
<p>
<ul>
<li><I>EINVAL</I>: Indicates that the <I>sem</I> input parameter is
<li><I>EINTR</I>: Indicates that the wait was interrupt by a signal
received by this task. In this case, the semaphore has not be acquired.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
#include <semaphore.h>
int sem_trywait ( sem_t *sem );
<p>
<b>Description:</b> This function locks the specified semaphore
only if the semaphore is currently not locked. In any event, the call
returns without blocking.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. The semaphore descriptor
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR) if unsuccessful
</ul>
If <I>sem_wait</I> returns -1 (ERROR) then the cause of the failure
will be indicated by the thread-specific <I>errno</I> value (a pointer
to this value can be obtained using <I>get_errno_ptr()</I>). The following
lists the possible values for <I>errno</I>:
<p>
<ul>
<li><I>EINVAL</I>: Indicates that the <I>sem</I> input parameter is
<li><I>EAGAIN</I>: Indicates that the semaphore was not acquired.
</ul>
<p>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<p>
<b>Description:</b> When a task has finished with a semaphore,
it will call sem_post(). This function unlocks the semaphore referenced
by <I>sem</I> by performing the semaphore unlock operation.
If the semaphore value resulting from this operation is positive, then
no tasks were blocked waiting for the semaphore to become unlocked;
The semaphore value is simply incremented.
If the value of the semaphore resulting from this operation is zero, then
on of the tasks blocked waiting for the semaphore will be allowed to
return successfully from its call to <I>sem_wait()</I>.
<p>
<b>NOTE</b>: <I>sem_post()</I> may be called from an interrupt handler.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b> This function cannot be called
from an interrupt handler. It assumes the currently executing
task is the one that is performing the unlock.
#include <semaphore.h>
int sem_getvalue ( sem_t *sem, int *sval );
<p>
<b>Description:</b> This function updates the location referenced
by sval argument to have the value of the semaphore referenced
by sem without effecting the state of the semaphore. The updated
value represents the actual semaphore value that occurred at some
unspecified time during the call, but may not reflect the actual
value of the semaphore when it is returned to the calling task.
If sem is locked, the value return by sem_getvalue() will either
be zero or a negative number whose absolute value represents the
number of tasks waiting for the semaphore.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sem</I>. Semaphore descriptor
<li><I>sval</I>. Buffer by which the value is returned
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR) if unsuccessful.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
NuttX provides a general watchdog timer facility.
This facility allows the NuttX user to specify a watchdog timer function
that will run after a specified delay.
The watchdog timer function will run in the context of the timer interrupt handler.
Because of this, a limited number of NuttX interfaces are available to he watchdog timer function.
However, the watchdog timer function may use <code>mq_send()</code>, <code>sigqueue()</code>,
or <code>kill()</code> to communicate with NuttX tasks.
</p>
<ul>
<li><a href="#wdcreate">2.6.1 wd_create</a></li>
<li><a href="#wddelete">2.6.2 wd_delete</a></li>
<li><a href="#wdstart">2.6.3 wd_start</a></li>
<li><a href="#wdcancel">2.6.4 wd_cancel</a></li>
<li><a href="#wdgettime">2.6.5 wd_gettime</a></li>
<p>
<b>Description:</b> The wd_create function will create a watchdog
<p>
<b>Input Parameters:</b> None.
<p>
<b>Returned Values:</b>
<ul>
<li>Pointer to watchdog that may be used as a handle in subsequent
NuttX calls (i.e., the watchdog ID), or NULL if insufficient resources
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
<ul>
<li>The number of available watchdogs is fixed (configured at
<p>
<b>Description:</b> The wd_delete function will deallocate a
watchdog. The watchdog will be removed from the timer queue if
has been started.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. The watchdog ID to delete. This is actually a
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b> It is the responsibility of the
caller to assure that the watchdog is inactive before deleting
it.
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
<ul>
<li>Does not make any checks to see if the watchdog is being used
STATUS wd_start( WDOG_ID wdog, int delay, wdentry_t wdentry,
intt argc, ....);
<p>
<b>Description:</b> This function adds a watchdog to the timer
queue. The specified watchdog function will be called from the
interrupt level after the specified number of ticks has elapsed.
Watchdog timers may be started from the interrupt level.
Watchdog times execute in the context of the timer interrupt handler.
To replace either the timeout delay or the function to be executed,
call wd_start again with the same wdog; only the most recent
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. Watchdog ID
<li><I>delay</I>. Delay count in clock ticks
<li><I>wdentry</I>. Function to call on timeout
<li><I>argc</I>. The number of uint32 parameters to pass to wdentry.
<li><I>...</I>. uint32 size parameters to pass to wdentry
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b> The watchdog routine runs in the
context of the timer interrupt handler and is subject to all ISR
restrictions.
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
STATUS wdStart (WDOG_ID wdog, int delay, FUNCPTR wdentry, int parameter);
<ul>
<li>The present implementation supports multiple parameters passed
to wdentry; VxWorks supports only a single parameter. The maximum
number of parameters is determined by
<p>
<b>Description:</b> This function cancels a currently running
watchdog timer. Watchdog timers may be canceled from the interrupt
level.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>wdog</I>. ID of the watchdog to cancel.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>OK or ERROR
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> This is a NON-POSIX interface.
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
<h3><a name="wdgettime">2.6.5 wd_gettime</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <wdog.h>
Sint wd_gettime(WDOG_ID wdog);
</pre>
<p>
<b>Description:</b>
This function returns the time remaining before the the specified watchdog expires.
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><code>wdog</code>. Identifies the watchdog that the request is for.</li>
</ul>
</p>
<p>
<b>Returned Value:</b>
The time in system ticks remaining until the watchdog time expires. Zero
means either that wdog is not valid or that the wdog has already expired.
</p>
<ul>
<li><a href="#clocksettime">2.7.1 clock_settime</a></li>
<li><a href="#clockgettime">2.7.2 clock_gettime</a></li>
<li><a href="#clockgetres">2.7.3 clock_getres</a></li>
<li><a href="#mktime">2.7.4 mktime</a></li>
<li><a href="#gmtimer">2.7.5 gmtime_r</a></li>
<li><a href="#localtimer">2.7.6 localtime_r</a></li>
<li><a href="#timercreate">2.7.7 timer_create</a></li>
<li><a href="#timerdelete">2.7.8 timer_delete</a></li>
<li><a href="#timersettime">2.7.9 timer_settime</a></li>
<li><a href="#timergettime">2.7.10 timer_gettime</a></li>
<li><a href="#timergetoverrun">2.7.11 timer_getoverrun</a></li>
</ul>
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_settime(clockid_t clockid, const struct timespec *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_settime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_gettime(clockid_t clockid, struct timespec *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_gettime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int clock_getres(clockid_t clockid, struct timespec *res);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>clock_getres()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
time_t mktime(struct tm *tp);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>mktime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
struct tm *gmtime_r(const time_t *clock, struct tm *result);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>parm</code>. </li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>gmtime_r()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<pre>
#include <time.h>
#define localtime_r(c,r) gmtime_r(c,r)
</pre>
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);
</pre>
<p>
<b>Description:</b>
The <code>timer_create()</code> function creates per-thread timer using the specified
clock, <code>clock_id</code>, as the timing base.
The <code>timer_create()</code> function returns, in
the location referenced by <code>timerid</code>, a timer ID of type timer_t used to identify
the timer in timer requests.
This timer ID is unique until the timer is deleted.
The particular clock, <code>clock_id<code>, is defined in <code><time.h><code>.
The timer whose ID is returned will be in a disarmed state upon return from
<code>timer_create()</code>.
</p>
<p>
The <code>evp</code> argument, if non-NULL, points to a <code>sigevent</code> structure.
This structure is allocated by the called and defines the asynchronous notification to occur.
If the <code>evp</code> argument is NULL, the effect is as if the <code>evp</code> argument pointed to
a <code>sigevent</code> structure with the <code>sigev_notify</code> member having the value <code>SIGEV_SIGNAL</code>,
the <code>sigev_signo</code> having a default signal number, and the <code>sigev_value</code> member
having the value of the timer ID.
</p>
<p>
Each implementation defines a set of clocks that can be used as timing bases
for per-thread timers. All implementations shall support a <code>clock_id</code> of
<code>CLOCK_REALTIME</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>clockid</code>. Specifies the clock to use as the timing base.
Must be <code>CLOCK_REALTIME</code>.</li>
<li><code>evp</code>. Refers to a user allocated sigevent structure that defines the
asynchronous notification. evp may be NULL (see above).</li>
<li><code>timerid</code>. The pre-thread timer created by the call to timer_create().</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If the call succeeds, <code>timer_create()</code> will return 0 (<code>OK</code>) and update the
location referenced by <code>timerid</code> to a <code>timer_t</code>, which can be passed to the
other per-thread timer calls. If an error occurs, the function will return
a value of -1 (<code>ERROR</code>) and set<code>errno</code>to indicate the error.
</p>
<ul>
<li><code>EAGAIN</code>. The system lacks sufficient signal queuing resources to honor the
request.</li>
<li><code>EAGAIN</code>. The calling process has already created all of the timers it is
allowed by this implementation.</li>
<li><code>EINVAL</code>. The specified clock ID is not defined.</li>
<li><code>ENOTSUP</code>. The implementation does not support the creation of a timer attached
to the CPU-time clock that is specified by clock_id and associated with a
thread different thread invoking timer_create().</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>Only <code>CLOCK_REALTIME</code> is supported for the <code>clockid</code> argument.</li>
</ul>
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_delete(timer_t timerid);
</pre>
<p>
<b>Description:</b>
The <code>timer_delete()</code> function deletes the specified timer, <code>timerid</code>, previously
created by the <code>timer_create()</code> function.
If the timer is armed when <code>timer_delete()</code> is called, the timer will be automatically disarmed before
removal.
The disposition of pending signals for the deleted timer is unspecified.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>.
The pre-thread timer, previously created by the call to timer_create(), to be deleted.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>timer_delete()</I> function will return zero (<I>OK</I>).
Otherwise, the function will return a value of -1 (ERROR) and set<code>errno</code>to indicate the error:
</p>
<ul>
<li><code>EINVAL</code>. The timer specified timerid is not valid.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
struct itimerspec *ovalue);
</pre>
<p>
<b>Description:</b>
The <code>timer_settime()</code> function sets the time until the next expiration of the
timer specified by <code>timerid</code> from the <code>it_value</code> member of the value argument
and arm the timer if the <code>it_value</code> member of value is non-zero. If the
specified timer was already armed when <code>timer_settime()</code> is called, this call
will reset the time until next expiration to the value specified. If the
<code>it_value</code> member of value is zero, the timer will be disarmed. The effect
of disarming or resetting a timer with pending expiration notifications is
unspecified.
</p>
<p>
If the flag <code>TIMER_ABSTIME</code> is not set in the argument flags, <code>timer_settime()</code>
will behave as if the time until next expiration is set to be equal to the
interval specified by the <code>it_value</code> member of value. That is, the timer will
expire in <code>it_value</code> nanoseconds from when the call is made. If the flag
<code>TIMER_ABSTIME</code> is set in the argument flags, <code>timer_settime()</code> will behave as
if the time until next expiration is set to be equal to the difference between
the absolute time specified by the <code>it_value</code> member of value and the current
value of the clock associated with <code>timerid</code>. That is, the timer will expire
when the clock reaches the value specified by the <code>it_value</code> member of value.
If the specified time has already passed, the function will succeed and the
expiration notification will be made.
</p>
<p>
The reload value of the timer will be set to the value specified by the
<code>it_interval</code> member of value. When a timer is armed with a non-zero
<code>it_interval</code>, a periodic (or repetitive) timer is specified.
</p>
<p>
Time values that are between two consecutive non-negative integer multiples
of the resolution of the specified timer will be rounded up to the larger
multiple of the resolution. Quantization error will not cause the timer to
expire earlier than the rounded time value.
</p>
<p>
If the argument <code>ovalue</code> is not NULL, the t<code>imer_settime()</code> function will store,
in the location referenced by <code>ovalue</code>, a value representing the previous
amount of time before the timer would have expired, or zero if the timer was
disarmed, together with the previous timer reload value. Timers will not
expire before their scheduled time.
</p>
<b>NOTE:</b>At present, the <code>ovalue</code> argument is ignored.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. The pre-thread timer, previously created by the call to timer_create(), to be be set.</li>
<li><code>flags</code>. Specifie characteristics of the timer (see above)</li>
<li><code>value</code>. Specifies the timer value to set</li>
<li><code>ovalue</code>. A location in which to return the time remaining from the previous timer setting (ignored).</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If the timer_gettime() succeeds, a value of 0 (OK) will be returned.
If an error occurs, the value -1 (ERROR) will be returned, and<code>errno</code>set to indicate the error.
</p>
<ul>
<li><code>EINVAL</code>. The timerid argument does not correspond to an ID returned by timer_create() but not yet deleted by timer_delete().</li>
<li><code>EINVAL</code>. A value structure specified a nanosecond value less than zero or greater than or equal to 1000 million,
and the it_value member of that structure did not specify zero seconds and nanoseconds.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>The <code>ovalue</code> argument is ignored.</li>
</ul>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_gettime(timer_t timerid, struct itimerspec *value);
</pre>
<p>
<b>Description:</b>
The <code>timer_gettime()</code> function will store the amount of time until the
specified timer, <code>timerid</code>, expires and the reload value of the timer into the
space pointed to by the <code>value</code> argument. The <code>it_value</code> member of this structure
will contain the amount of time before the timer expires, or zero if the timer
is disarmed. This value is returned as the interval until timer expiration,
even if the timer was armed with absolute time. The <code>it_interval</code> member of
<code>value</code> will contain the reload value last set by <code>timer_settime()</code>.
</p>
<p>
Due to the asynchronous operation of this function, the time reported
by this function could be significantly more than that actual time
remaining on the timer at any time.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. Specifies pre-thread timer, previously created by the call to
t<code>imer_create()</code>, whose remaining count will be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>timer_gettime()</I> function will return zero (<I>OK</I>).
Otherwise, an non-zero error number will be returned to indicate the error:
</p>
<ul>
<li><code>EINVAL</code>.
The <code>timerid</code> argument does not correspond to an ID returned by
<code>timer_create()</code> but not yet deleted by <code>timer_delete()</code>.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <time.h>
int timer_getoverrun(timer_t timerid);
</pre>
<p>
<b>Description:</b>
Only a single signal will be queued to the process for a given timer at any
point in time. When a timer for which a signal is still pending expires, no
signal will be queued, and a timer overrun will occur. When a timer
expiration signal is delivered to or accepted by a process, if the
implementation supports the <i>Realtime Signals Extension</i>, the
<code>timer_getoverrun()</code> function will return the timer expiration overrun count for
the specified timer. The overrun count returned contains the number of extra
timer expirations that occurred between the time the signal was generated
(queued) and when it was delivered or accepted, up to but not including an
implementation-defined maximum of <code>DELAYTIMER_MAX</code>. If the number of such
extra expirations is greater than or equal to <code>DELAYTIMER_MAX</code>, then the
overrun count will be set to <code>DELAYTIMER_MAX</code>. The value returned by
<code>timer_getoverrun()</code> will apply to the most recent expiration signal delivery
or acceptance for the timer. If no expiration signal has been delivered
for the timer, or if the <i>Realtime Signals Extension</i> is not supported, the
return value of <code>timer_getoverrun()</code> is unspecified.
</p>
<p>
<b>NOTE:</b> This interface is not currently implemented in NuttX.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>timerid</code>. Specifies pre-thread timer, previously created by the call to
<code>timer_create()</code>, whose overrun count will be returned.</li>
</ul>
<p>
<b>Returned Values:</b>
If the <code>timer_getoverrun()</code> function succeeds, it will return the timer
expiration overrun count as explained above. <code>timer_getoverrun()</code> will fail if:
</p>
<ul>
<li><code>EINVAL</code>.
The <code>timerid</code> argument does not correspond to an ID returned by
<code>timer_create()</code> but not yet deleted by <code>timer_delete()</code>.</li>
</ul>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name. Differences from the full POSIX implementation include:
</p>
<ul>
<li>This interface is not currently implemented by NuttX.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
<p>
NuttX provides signal interfaces for tasks. Signals are used to
alter the flow control of tasks by communicating asynchronous events
within or between task contexts.
Any task or interrupt handler can post (or send) a signal to a particular task.
The task being signaled will execute task-specified signal handler
function the next time that the task has priority.
The signal handler is a user-supplied function that is bound to
a specific signal and performs whatever actions are necessary
whenever the signal is received.
</p>
<p>
There are no predefined actions for any signal.
The default action for all signals (i.e., when no signal handler has
been supplied by the user) is to ignore the signal.
In this sense, all NuttX are <i>real time</i> signals.
</p>
<p>
Tasks may also suspend themselves and wait until a signal is received.
</p>
<p>
The following signal handling interfaces are provided by NuttX:
</p>
<ul>
<li><a href="#sigemptyset">2.8.1 sigemptyset</a></li>
<li><a href="#sigfillset">2.8.2 sigfillset</a></li>
<li><a href="#sigaddset">2.8.3 sigaddset</a></li>
<li><a href="#sigdelset">2.8.4 sigdelset</a></li>
<li><a href="#sigismember">2.8.5 sigismember</a></li>
<li><a href="#sigaction">2.8.6 sigaction</a></li>
<li><a href="#sigprocmask">2.8.7 sigprocmask</a></li>
<li><a href="#sigpending">2.8.8 sigpending</a></li>
<li><a href="#sigsuspend">2.8.9 sigsuspend</a></li>
<li><a href="#sigwaitinfo">2.8.10 sigwaitinfo</a></li>
<li><a href="#sigtimedwait">2.8.11 sigtimedwait</a></li>
<li><a href="#sigqueue">2.8.12 sigqueue</a></li>
<li><a href="#kill">2.8.13 kill</a></li>
<H3><a name="sigemptyset">2.8.1 sigemptyset</a></H3>
<p>
<b>Description:</b> This function initializes the signal set specified
by set such that all signals are excluded.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to initialize.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal set cannot be initialized.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigfillset">2.8.2 sigfillset</a></H3>
<p>
<b>Description:</b> This function initializes the signal set specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to initialize
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal set cannot be initialized.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigaddset">2.8.3 sigaddset</a></H3>
#include <signal.h>
int sigaddset(sigset_t *set, int signo);
<p>
<b>Description:</b> This function adds the signal specified by
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to add signal to
<li><I>signo</I>. Signal to add
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigdelset">2.8.4 sigdelset</a></H3>
#include <signal.h>
int sigdelset(sigset_t *set, int signo);
<p>
<b>Description:</b> This function deletes the signal specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to delete the signal from
<li><I>signo</I>. Signal to delete
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigismember">2.8.5 sigismember</a></H3>
#include <signal.h>
int sigismember(const sigset_t *set, int signo);
<p>
<b>Description:</b> This function tests whether the signal specified
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. Signal set to test
<li><I>signo</I>. Signal to test for
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>1 (TRUE), if the specified signal is a member of the set,
<li>0 (OK or FALSE), if it is not, or
<li>-1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigaction">2.8.6 sigaction</a></H3>
#include <signal.h>
int sigaction( int signo, const struct sigaction *act,
struct sigaction *oact );
<p>
<b>Description:</b> This function allows the calling task to
examine and/or specify the action to be associated with a specific
signal.
The structure sigaction, used to describe an action to be taken, is defined
to include the following members:
<ul>
<li><I>sa_u.sa_handler</I>. A pointer to a signal-catching function.
<li><I>sa_u.sa_sigaction</I>. An alternative form for the signal catching
<li><I>sa_flags</I>: Special flags to affect behavior of a signal.
</ul>
<p>
If the argument act is not NULL, it points to a structure specifying the
action to be associated with the specified signal. If the argument oact
is not NULL, the action previously associated with the signal is stored
in the location pointed to by the argument oact. If the argument act is
NULL, signal handling is unchanged by this function call; thus, the call
can be used to enquire about the current handling of a given signal.
When a signal is caught by a signal-catching function installed by the
sigaction() function, a new signal mask is calculated and installed for
the duration of the signal-catching function. This mask is formed by taking
the union of the current signal mask and the value of the sa_mask for the
signal being delivered, and then including the signal being delivered. If
and when the signal handler returns, the original signal mask is restored.
Signal catching functions execute in the same address environment as the
task that called sigaction() to install the signal-catching function.
Once an action is installed for a specific signal, it remains installed
until another action is explicitly requested by another call to
sigaction().
<p>
<b>Input Parameters:</b>
<ul>
<li><I>sig</I>. Signal of interest
<li><I>act</I>. Location of new handler
<li><I>oact</I>. Location to store old handler
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if the signal number is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the POSIX implementation include:
<ul>
<li>Special values of sa_handler in the struct sigaction act input
<H3><a name="sigprocmask">2.8.7 sigprocmask</a></H3>
#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
<p>
<b>Description:</b> This function allows the calling task to
examine and/or change its signal mask. If the set is not NULL,
then it points to a set of signals to be used to change the currently
blocked set. The value of how indicates the manner in which the
set is changed.
If there are any pending unblocked signals after the call to sigprocmask(),
those signals will be delivered before sigprocmask() returns.
If sigprocmask() fails, the signal mask of the task is not changed.
<p>
<b>Input Parameters:</b>
<ul>
<li><I>how</I>. How the signal mast will be changed:
<ul>
<li><I>osSIG_BLOCK</I>. The resulting set is the union of the
current set and the signal set pointed to by the <I>set</I> input parameter.
of the current set and the complement of the signal set pointed
to by the <I>set</I> input parameter.
</ul>
<li><I>set</I>. Location of the new signal mask
<li><I>oset</I>. Location to store the old signal mask
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK), or -1 (ERROR) if how is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigpending">2.8.8 sigpending</a></H3>
<p>
<b>Description:</b> This function stores the returns the set of
signals that are blocked for delivery and that are pending for
the calling task in the space pointed to by set.
If the task receiving a signal has the signal blocked via its
sigprocmask, the signal will pend until it is unmasked. Only one pending
signal (for a given signo) is retained by the system. This is consistent
with POSIX which states: "If a subsequent occurrence of a pending
signal is generated, it is implementation defined as to whether the signal
is delivered more than once."
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. The location to return the pending signal set.
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>0 (OK) or -1 (ERROR)
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigsuspend">2.8.9 sigsuspend</a></H3>
#include <signal.h>
int sigsuspend( const sigset_t *set );
<p>
<b>Description:</b> The sigsuspend() function replaces the signal mask
with the set of signals pointed to by the argument set and then suspends
the task until delivery of a signal to the task.
If the effect of the set argument is to unblock a pending signal, then
no wait is performed.
Waiting for an empty signal set stops a task without freeing any
resources (a very bad idea).
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. The value of the signal <b>mask</b> to use while
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>-1 (ERROR) always
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the POSIX specification include:
<ul>
<li>POSIX does not indicate that the original signal mask is restored.
<li>POSIX states that sigsuspend() "suspends the task until
delivery of a signal whose action is either to execute a signal-catching
function or to terminate the task." Only delivery of the signal
is required in the present implementation (even if the signal is ignored).
<H3><a name="sigwaitinfo">2.8.10 sigwaitinfo</a></H3>
#include <signal.h>
int sigwaitinfo(const sigset_t *set, struct siginfo *info);
<p>
<b>Description:</b> This function is equivalent to sigtimedwait()
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. The set of pending signals to wait for.
<li><I>info</I>. The returned signal values
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>Signal number that cause the wait to be terminated, otherwise
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="sigtimedwait">2.8.11 sigtimedwait</a></H3>
#include <signal.h>
int sigtimedwait( const sigset_t *set, struct siginfo *info,
const struct timespec *timeout );
<p>
<b>Description:</b> This function selects the pending signal set
specified by the argument set. If multiple signals are pending in set,
it will remove and return the lowest numbered one. If no signals in set
are pending at the time of the call, the calling task will be suspended
until one of the signals in set becomes pending OR until the task
interrupted by an unblocked signal OR until the time interval specified by
timeout (if any), has expired. If timeout is NULL, then the timeout interval
is forever.
If the info argument is non-NULL, the selected signal number is
stored in the si_signo member and the cause of the signal is store
in the si_code member. The content of si_value is only meaningful
if the signal was generated by sigqueue(). The following values
for si_code are defined in signal.h:
<ul>
<li><I>SI_USER</I>. Signal sent from kill, raise, or abort
<li><I>SI_QUEUE</I>. Signal sent from sigqueue
<li><I>SI_TIMER</I>. Signal is result of timer expiration
<li><I>SI_ASYNCIO</I>. Signal is the result of asynch IO completion
<li><I>SI_MESGQ</I>. Signal generated by arrival of a message on an empty message queue.
</ul>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>set</I>. The set of pending signals to wait for.
<li><I>info</I>. The returned signal values
<li><I>timeout</I>. The amount of time to wait
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>Signal number that cause the wait to be terminated, otherwise
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the POSIX interface include:
<ul>
<li>Values for si_codes differ
<li>No mechanism to return cause of ERROR. (It can be inferred
<li>POSIX states that "If no signal is pending at the time of the
call, the calling task shall be suspended until one or more signals
in set become pending or until it is interrupted by an unblocked,
<I>caught</I> signal." The present implementation does not require
that the unblocked signal be caught; the task will be resumed even if
the unblocked signal is ignored.
<H3><a name="sigqueue">2.8.12 sigqueue</a></H3>
#include <signal.h>
int sigqueue (int tid, int signo, const union sigval value);
<p>
<b>Description:</b> This function sends the signal specified by
signo with the signal parameter value to the task specified
by tid.
If the receiving task has the signal blocked via its sigprocmask,
the signal will pend until it is unmasked. Only one pending signal
(for a given signo) is retained by the system. This is consistent with
POSIX which states: "If a subsequent occurrence of a pending signal
is generated, it is implementation defined as to whether the signal
is delivered more than once."
<p>
<b>Input Parameters:</b>
<ul>
<li><I>tid</I>. ID of the task to receive signal
<li><I>signo</I>. Signal number
<li><I>value</I>. Value to pass to task with signal
</ul>
<p>
<b>Returned Values:</b>
<ul>
<li>
On success (at least one signal was sent), zero (OK) is returned.
On error, -1 (ERROR) is returned, and<code>errno</code>is set appropriately.
<ul>
<li><code>EGAIN</code>. The limit of signals which may be queued has been reached.</li>
<li><code>EINVAL</code>. signo was invalid.</li>
<li><code>EPERM</code>. The task does not have permission to send the signal to the receiving process.</li>
<li><code>ESRCH</code>. No process has a PID matching pid.</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b> POSIX Compatibility:</b> Comparable to the POSIX
interface of the same name.
Differences from the POSIX interface include:
<ul>
<li>Default action is to ignore signals.
<li>Signals are processed one at a time in order
<li>POSIX states that, "If signo is zero (the null signal), error
checking will be performed but no signal is actually sent."
There is no null signal in the present implementation; a zero signal will
be sent.
<H3><a name="kill">2.8.13 kill</a></H3>
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);
The kill() system call can be used to send any signal to
any task.
</p>
<p>
If the receiving task has the signal blocked via its sigprocmask,
the signal will pend until it is unmasked. Only one pending signal
(for a given signo) is retained by the system. This is consistent with
POSIX which states: "If a subsequent occurrence of a pending signal
is generated, it is implementation defined as to whether the signal
is delivered more than once."
</p>
<p>
<b>Input Parameters:</b>
<ul>
<li><I>pid</I>. The id of the task to receive the signal.
The POSIX <code>kill()</code> specification encodes process group
information as zero and negative pid values.
Only positive, non-zero values of pid are supported by this
implementation. ID of the task to receive signal
If signo is zero, no signal is sent, but all error checking is performed.
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
Differences from the POSIX interface include:
</p>
<ul>
<li>Default action is to ignore signals.</li>
<li>Signals are processed one at a time in order </li>
<li>Sending of signals to 'process groups' is not supported in NuttX.</li>
</ul>
<p>
NuttX does not support <i>processes</i> in the way that, say, Linux does.
NuttX only supports simple threads or tasks running within the same address space.
For the most part, threads and tasks are interchangeable and differ primarily
only in such things as the inheritance of file descriptors.
Basically, threads are initialized and uninitialized differently and share a
few more resources than tasks.
<p>
The following pthread interfaces are supported in some form by NuttX:
</p>
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
<li><a href="#pthreadattrinit">2.9.1 pthread_attr_init</a></li>
<li><a href="#pthreadattrdestroy">2.9.2 pthread_attr_destroy</a></li>
<li><a href="#pthreadattrsetschedpolity">2.9.3 pthread_attr_setschedpolicy</a></li>
<li><a href="#pthreadattrgetschedpolicy">2.9.4 pthread_attr_getschedpolicy</a></li>
<li><a href="#pthreadattrsetschedparam">2.9.5 pthread_attr_setschedparam</a></li>
<li><a href="#pthreadattrgetschedparam">2.9.6 pthread_attr_getschedparam</a></li>
<li><a href="#pthreadattrsetinheritsched">2.9.7 pthread_attr_setinheritsched</a></li>
<li><a href="#pthreadattrgetinheritsched">2.9.8 pthread_attr_getinheritsched</a></li>
<li><a href="#pthreadattrsetstacksize">2.9.9 pthread_attr_setstacksize</a></li>
<li><a href="#pthreadattrgetstacksize">2.9.10 pthread_attr_getstacksize</a></li>
<li><a href="#pthreadcreate">2.9.11 pthread_create</a></li>
<li><a href="#pthreaddetach">2.9.12 pthread_detach</a></li>
<li><a href="#pthreadexit">2.9.13 pthread_exit</a></li>
<li><a href="#pthreadcancel">2.9.14 pthread_cancel</a></li>
<li><a href="#pthreadsetcancelstate">2.9.15 pthread_setcancelstate</a></li>
<li><a href="#pthreadtestcancelstate">2.9.16 pthread_testcancelstate</a></li>
<li><a href="#pthreadjoin">2.9.17 pthread_join</a></li>
<li><a href="#pthreadyield">2.9.18 pthread_yield</a></li>
<li><a href="#pthreadself">2.9.19 pthread_self</a></li>
<li><a href="#pthreadgetschedparam">2.9.20 pthread_getschedparam</a></li>
<li><a href="#pthreadsetschedparam">2.9.21 pthread_setschedparam</a></li>
<li><a href="#pthreadkeycreate">2.9.22 pthread_key_create</a></li>
<li><a href="#pthreadsetspecific">2.9.23 pthread_setspecific</a></li>
<li><a href="#pthreadgetspecific">2.9.24 pthread_getspecific</a></li>
<li><a href="#pthreadkeydelete">2.9.25 pthread_key_delete</a></li>
<li><a href="#pthreadmutexattrinit">2.9.26 pthread_mutexattr_init</a></li>
<li><a href="#pthreadmutexattrdestroy">2.9.27 pthread_mutexattr_destroy</a></li>
<li><a href="#pthreadmutexattrgetpshared">2.9.28 pthread_mutexattr_getpshared</a></li>
<li><a href="#pthreadmutexattrsetpshared">2.9.29 pthread_mutexattr_setpshared</a></li>
<li><a href="#pthreadmutexinit">2.9.30 pthread_mutex_init</a></li>
<li><a href="#pthreadmutexdestrory">2.9.31 pthread_mutex_destroy</a></li>
<li><a href="#pthreadmutexlock">2.9.32 pthread_mutex_lock</a></li>
<li><a href="#pthreadmutextrylock">2.9.33 pthread_mutex_trylock</a></li>
<li><a href="#pthreadmutexunlock">2.9.34 pthread_mutex_unlock</a></li>
<li><a href="#pthreadconaddrinit">2.9.35 pthread_condattr_init</a></li>
<li><a href="#pthreadocndattrdestroy">2.9.36 pthread_condattr_destroy</a></li>
<li><a href="#pthreadcondinit">2.9.37 pthread_cond_init</a></li>
<li><a href="#pthreadconddestroy">2.9.38 pthread_cond_destroy</a></li>
<li><a href="#pthreadcondbroadcast">2.9.39 pthread_cond_broadcast</a></li>
<li><a href="#pthreadcondsignal">2.9.40 pthread_cond_signal</a></li>
<li><a href="#pthreadcondwait">2.9.41 pthread_cond_wait</a></li>
<li><a href="#pthreadcondtimedwait">2.9.42 pthread_cond_timedwait</a></li>
<li><a href="#pthreadbarrierattrinit">2.9.43 pthread_barrierattr_init</a></li>
<li><a href="#pthreadbarrierattrdestroy">2.9.44 pthread_barrierattr_destroy</a></li>
<li><a href="#pthreadbarrierattrsetpshared">2.9.45 pthread_barrierattr_setpshared</a></li>
<li><a href="#pthreadbarrierattrgetpshared">2.9.46 pthread_barrierattr_getpshared</a></li>
<li><a href="#pthreadbarrierinit">2.9.47 pthread_barrier_init</a></li>
<li><a href="#pthreadbarrierdestroy">2.9.48 pthread_barrier_destroy</a></li>
<li><a href="#pthreadbarrierwait">2.9.49 pthread_barrier_wait</a></li>
<li><a href="#pthreadonce">2.9.50 pthread_once</a></li>
<li><a href="#pthreadkill">2.9.51 pthread_kill</a></li>
<li><a href="#pthreadsigmask">2.9.52 pthread_sigmask</a></li>
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
<p>
No support for the ollowing pthread interfaces is provided by NuttX:
</p>
<ul>
<li><code>pthread_atfork</code>. register fork handlers.</li>
<li><code>pthread_attr_getdetachstate</code>. get and set the detachstate attribute.</li>
<li><code>pthread_attr_getguardsize</code>. get and set the thread guardsize attribute.</li>
<li><code>pthread_attr_getinheritsched</code>. get and set the inheritsched attribute.</li>
<li><code>pthread_attr_getscope</code>. get and set the contentionscope attribute.</li>
<li><code>pthread_attr_getstack</code>. get and set stack attributes.</li>
<li><code>pthread_attr_getstackaddr</code>. get and set the stackaddr attribute.</li>
<li><code>pthread_attr_setdetachstate</code>. get and set the detachstate attribute.</li>
<li><code>pthread_attr_setguardsize</code>. get and set the thread guardsize attribute.</li>
<li><code>pthread_attr_setscope</code>. get and set the contentionscope attribute.</li>
<li><code>pthread_attr_setstack</code>. get and set stack attributes.</li>
<li><code>pthread_attr_setstackaddr</code>. get and set the stackaddr attribute.</li>
<li><code>pthread_barrier_destroy</code>. destroy and initialize a barrier object.</li>
<li><code>pthread_barrier_init</code>. destroy and initialize a barrier object.</li>
<li><code>pthread_barrier_wait</code>. synchronize at a barrier.</li>
<li><code>pthread_cleanup_pop</code>. establish cancellation handlers.</li>
<li><code>pthread_cleanup_push</code>. establish cancellation handlers.</li>
<li><code>pthread_condattr_getclock</code>. get and set the clock selection condition variable attribute.</li>
<li><code>pthread_condattr_getpshared</code>. get and set the process-shared condition variable attributes.</li>
<li><code>pthread_condattr_setclock</code>. get and set the clock selection condition variable attribute.</li>
<li><code>pthread_condattr_setpshared</code>. get and set the process-shared condition variable attributes.</li>
<li><code>pthread_getconcurrency</code>. get and set the level of concurrency.</li>
<li><code>pthread_getcpuclockid</code>. access a thread CPU-time clock.</li>
<li><code>pthread_mutex_getprioceiling</code>. get and set the priority ceiling of a mutex.</li>
<li><code>pthread_mutex_setprioceiling</code>. get and set the priority ceiling of a mutex.</li>
<li><code>pthread_mutex_timedlock</code>. lock a mutex.</li>
<li><code>pthread_mutexattr_getprioceiling</code>. get and set the prioceiling attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_getprotocol</code>. get and set the protocol attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_gettype</code>. get and set the mutex type attribute.</li>
<li><code>pthread_mutexattr_setprioceiling</code>. get and set the prioceiling attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_setprotocol</code>. get and set the protocol attribute of the mutex attributes object.</li>
<li><code>pthread_mutexattr_settype</code>. get and set the mutex type attribute.</li>
<li><code>pthread_rwlock_destroy</code>. destroy and initialize a read-write lock object.</li>
<li><code>pthread_rwlock_init</code>. destroy and initialize a read-write lock object.</li>
<li><code>pthread_rwlock_rdlock</code>. lock a read-write lock object for reading.</li>
<li><code>pthread_rwlock_timedrdlock</code>. lock a read-write lock for reading.</li>
<li><code>pthread_rwlock_timedwrlock</code>. lock a read-write lock for writing.</li>
<li><code>pthread_rwlock_tryrdlock</code>. lock a read-write lock object for reading.</li>
<li><code>pthread_rwlock_trywrlock</code>. lock a read-write lock object for writing.</li>
<li><code>pthread_rwlock_unlock</code>. unlock a read-write lock object.</li>
<li><code>pthread_rwlock_wrlock</code>. lock a read-write lock object for writing.</li>
<li><code>pthread_rwlockattr_destroy</code>. destroy and initialize the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_getpshared</code>. get and set the process-shared attribute of the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_init</code>. destroy and initialize the read-write lock attributes object.</li>
<li><code>pthread_rwlockattr_setpshared</code>. get and set the process-shared attribute of the read-write lock attributes object.</li>
<li><code>pthread_setcanceltype</code>. set cancelability state.</li>
<li><code>pthread_setconcurrency</code>. get and set the level of concurrency.</li>
<li><code>pthread_spin_destroy</code>. destroy or initialize a spin lock object.</li>
<li><code>pthread_spin_init</code>. destroy or initialize a spin lock object.</li>
<li><code>pthread_spin_lock</code>. lock a spin lock object.</li>
<li><code>pthread_spin_trylock</code>. lock a spin lock object.</li>
<li><code>pthread_spin_unlock</code>. unlock a spin lock object.</li>
<li><code>pthread_testcancel</code>. set cancelability state.</li>
</ul>
<H3><a name="pthreadattrinit">2.9.1 pthread_attr_init</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_init(pthread_attr_t *attr);
Initializes a thread attributes object (attr) with default values
for all of the individual attributes used by the implementation.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<p>
<H3><a name="pthreadattrdestroy">2.9.2 pthread_attr_destroy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_destroy(pthread_attr_t *attr);
An attributes object can be deleted when it is no longer needed.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<p>
<H3><a name="pthreadattrsetschedpolity">2.9.3 pthread_attr_setschedpolicy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_setschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrgetschedpolicy">2.9.4 pthread_attr_getschedpolicy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_getschedpolicy(pthread_attr_t *attr, int *policy);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrsetschedparam">2.9.5 pthread_attr_getschedpolicy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_setschedparam(pthread_attr_t *attr,
const struct sched_param *param);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getschedpolicy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrgetschedparam">2.9.6 pthread_attr_getschedparam</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_getschedparam(pthread_attr_t *attr,
struct sched_param *param);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getschedparam()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrsetinheritsched">2.9.7 pthread_attr_setinheritsched</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_setinheritsched()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<p>
<H3><a name="pthreadattrgetinheritsched">2.9.8 pthread_attr_getinheritsched</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_getinheritsched(const pthread_attr_t *attr,
int *inheritsched);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getinheritsched()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrsetstacksize">2.9.9 pthread_attr_setstacksize</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_setstacksize(pthread_attr_t *attr, long stacksize);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_setstacksize()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadattrgetstacksize">2.9.10 pthread_attr_getstacksize</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_attr_getstacksize(pthread_attr_t *attr, long *stackaddr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_attr_getstacksize()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcreate">2.9.11 pthread_create</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_create(pthread_t *thread, pthread_attr_t *attr,
pthread_startroutine_t startRoutine,
pthread_addr_t arg);
To create a thread object and runnable thread, a routine
must be specified as the new thread's start routine. An
argument may be passed to this routine, as an untyped
address; an untyped address may also be returned as the
routine's value. An attributes object may be used to
specify details about the kind of thread being created.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_create()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreaddetach">2.9.12 pthread_detach</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_detach(pthread_t thread);
A thread object may be "detached" to specify that the
return value and completion status will not be requested.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_detach()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadexit">2.9.13 pthread_exit</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
void pthread_exit(pthread_addr_t pvValue);
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_exit()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcancel">2.9.14 pthread_cancel</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_cancel(pthread_t thread);
<p>The pthread_cancel() function shall request that thread
be canceled. The target thread's cancelability state determines
when the cancellation takes effect. When the
cancellation is acted on, thread shall be terminated.</p>
<p>When cancelability is disabled, all cancels are held pending
in the target thread until the thread changes the cancelability.
When cancelability is deferred, all cancels are held pending in
the target thread until the thread changes the cancelability or
calls pthread_testcancel().</p>
<p>Cancelability is asynchronous; all cancels are acted upon
immediately (when enable), interrupting the thread with its processing.</p>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>thread</I>.
If successful, the <I>ptnread_cancel()</I> function will return zero (<I>OK</I>).
Otherwise, an error number will be returned to indicate the error:
No thread could be found corresponding to that specified by the given thread ID.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li>The thread-specific data destructor functions shall be called for thread.
However, these destructors are not currently supported.</li>
<li>Cancellation types are not supported. The thread will be canceled
at the time that pthread_cancel() is called or, if cancelation is disabled, at
the time when cancelation is re-enabled.</li>
<li><tt>pthread_testcancel()</tt> is not supported.</li>
<li>Thread cancellation at <i>cancellation points</i> is not supported.</li>
<H3><a name="pthreadsetcancelstate">2.9.15 pthread_setcancelstate</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_setcancelstate(int state, int *oldstate);
<p>
<b>Description:</b>
<p>The <i>pthread_setcancelstate()</i> function atomically
sets both the calling thread's cancelability state to the indicated
state and returns the previous cancelability state at the location
referenced by oldstate.
Legal values for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.<.li>
<p>Any pending thread cancelation may occur at the time that the
cancelation state is set to PTHREAD_CANCEL_ENABLE.</p>
New cancelation state. One of PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.<.li>
If successful, the <I>pthread_setcancelstate()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be returned to indicate the error:
No thread could be found corresponding to that specified by the given thread ID.</li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadtestcancelstate">2.9.16 pthread_testcancelstate</a></H3>
<p>
<b>Function Prototype:</b>
<p>
<p>
<b>Description:</b>
<p><b>NOT SUPPORTED</b>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_setcancelstate()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadjoin">2.9.17 pthread_join</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_join(pthread_t thread, pthread_addr_t *ppvValue);
A thread can await termination of another thread and retrieve
the return value of the thread.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_join()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadyield">2.9.18 pthread_yield</a></H3>
<p>
<b>Function Prototype:</b>
<p>
A thread may tell the scheduler that its processor can be
made available.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_yield()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadself">2.9.19 pthread_self</a></H3>
<p>
<b>Function Prototype:</b>
<p>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_self()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadgetschedparam">2.9.20 pthread_getschedparam</a></H3>
#include <pthread.h>
int pthread_getschedparam(pthread_t thread, int *policy,
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
struct sched_param *param);
</pre>
<p>
<b>Description:</b>
The <code>pthread_getschedparam()</code> functions will get the
scheduling policy and parameters of threads.
For <code>SCHED_FIFO</code> and <code>SCHED_RR</code>, the only
required member of the <code>sched_param</code> structure is the
priority <code>sched_priority</code>.
</p>
<p>
The <code>pthread_getschedparam()</code> function will retrieve the
scheduling policy and scheduling parameters for the thread whose thread
ID is given by <code>thread</code> and will store those values in
<code>policy</code> and <code>param</code>, respectively.
The priority value returned from <code>pthread_getschedparam()</code>
will be the value specified by the most recent <code>pthread_setschedparam()</code>,
<code>pthread_setschedprio()</code>, or <code>pthread_create()</code> call
affecting the target thread.
It will not reflect any temporary adjustments to its priority (such as might
result of any priority inheritance, for example).
</p>
<p>
The policy parameter may have the value <code>SCHED_FIFO</code> or <code>SCHED_RR</code>
(<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code>, in particular, are not supported).
The <code>SCHED_FIFO</code> and <code>SCHED_RR<code> policies will have a single
scheduling parameter, <code>sched_priority</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
<li>
<code>thread</code>.
The ID of thread whose scheduling parameters will be queried.
</li>
<li>
<code>policy</code>.
The location to store the thread's scheduling policy.
</li>
<li>
<code>param</code>.
The location to store the thread's priority.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (<code>OK</code>) if successful.
Otherwise, the error code <code>ESRCH</code> if the value specified by
<code>thread</code> does not refer to an existing thread.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<H3><a name="pthreadsetschedparam">2.9.21 pthread_setschedparam</a></H3>
#include <pthread.h>
int pthread_setschedparam(pthread_t thread, int policy,
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
const struct sched_param *param);
</pre>
<p>
<b>Description:</b>
The <code>pthread_setschedparam()</code> functions will set the scheduling policy
and parameters of threads.
For <code>SCHED_FIFO</code> and <code>SCHED_RR</code>, the only required member
of the <code>sched_param</code> structure is the priority <code>sched_priority</code>.
</p>
</p>
The <code>pthread_setschedparam()</code> function will set the scheduling policy
and associated scheduling parameters for the thread whose thread ID is given by
<code>thread</code> to the policy and associated parameters provided in
<code>policy</code> and <code>param</code>, respectively.
</p>
<p>
The policy parameter may have the value <code>SCHED_FIFO</code> or <code>SCHED_RR</code>.
(<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code>, in particular, are not supported).
The <code>SCHED_FIFO</code> and <code>SCHED_RR</code> policies will have a single
scheduling parameter, <code>sched_priority</code>.
</p>
<p>
If the <code>pthread_setschedparam()</code> function fails, the scheduling
parameters will not be changed for the target thread.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>thread</code>.
The ID of thread whose scheduling parameters will be modified.
</li>
<li>
<code>policy</code>.
The new scheduling policy of the thread.
Either <code>SCHED_FIFO</code> or <code>SCHED_RR<code>.
<code>SCHED_OTHER<code> and <code>SCHED_SPORADIC<code> are not supported.
</li>
<li>
<code>param</code>.
The location to store the thread's priority.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <I>pthread_setschedparam()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
</p>
<ul>
<li>
<code>EINVAL</code>.
The value specified by <code>policy</code> or one of the scheduling parameters
associated with the scheduling policy <code>policy</code> is invalid.
</li>
<li>
<code>ENOTSUP</code>.
An attempt was made to set the policy or scheduling parameters to an unsupported
value (<code>SCHED_OTHER</code> and <code>SCHED_SPORADIC</code> in particular are
not supported)
</li>
<li>
<code>EPERM</code>.
The caller does not have the appropriate permission to set either the scheduling
parameters or the scheduling policy of the specified thread.
Or, the implementation does not allow the application to modify one of the
parameters to the value specified.
</li>
<li>
<code>ESRCH</code>.
The value specified by thread does not refer to a existing thread.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b>
Comparable to the POSIX interface of the same name.
</p>
<H3><a name="pthreadkeycreate">2.9.22 pthread_key_create</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_key_create( pthread_key_t *key, void (*destructor)(void*) )
This function creates a thread-specific data key visible
to all threads in the system. Although the same key value
may be used by different threads, the values bound to
the key by <I>pthread_setspecific()</I> are maintained on a
per-thread basis and persist for the life of the calling
thread.
Upon key creation, the value <I>NULL</I> will be associated with
the the new key in all active threads. Upon thread
creation, the value <I>NULL</I> will be associated with all
defined keys in the new thread.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>key</I> is a pointer to the key to create.
<li><I>destructor</I> is an optional destructor() function that may
be associated with each key that is invoked when a
thread exits. However, this argument is ignored in
the current implementation.
If successful, the <I>pthread_key_create()</I> function will
store the newly created key value at *<I>key</I> and return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><I>EAGAIN</I>. The system lacked sufficient resources
to create another thread-specific data key, or the
system-imposed limit on the total number of keys
per task {<I>PTHREAD_KEYS_MAX</I>} has been exceeded
<li><I>ENONMEM</I> Insufficient memory exists to create the key.
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li>The present implementation ignores the destructor argument.
</ul>
<H3><a name="pthreadsetspecific">2.9.23 pthread_setspecific</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_setspecific( pthread_key_t key, void *value )
The <I>pthread_setspecific()</I> function associates a thread-
specific value with a key obtained via a previous call
to <I>pthread_key_create()</I>. Different threads may bind
different values to the same key. These values are
typically pointers to blocks of dynamically allocated
memory that have been reserved for use by the calling
thread.
The effect of calling <I>pthread_setspecific()</I> with a key value
not obtained from <I>pthread_key_create()</I> or after a key has been
deleted with <I>pthread_key_delete()</I> is undefined.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>key</I>. The data key to set the binding for.
<li><I>value</I>. The value to bind to the key.
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, <I>pthread_setspecific()</I> will return zero (<I>OK</I>).
Otherwise, an error number will be returned:
<p>
<ul>
<li><I>ENOMEM</I>. Insufficient memory exists to associate the value
<li><I>EINVAL</I>. The key value is invalid.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li>pthread_setspecific() may be called from a thread-specific data
<H3><a name="pthreadgetspecific">2.9.24 pthread_getspecific</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
void *pthread_getspecific( pthread_key_t key )
The <I>pthread_getspecific()</I> function returns the value
currently bound to the specified key on behalf of the
calling thread.
The effect of calling <I>pthread_getspecific()</I> with a key value
not obtained from <I>pthread_key_create()</I> or after a key has been
deleted with <I>pthread_key_delete()</I> is undefined.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>key</I>. The data key to get the binding for.
</ul>
<p>
<b>Returned Values:</b>
<p>
The function <I>pthread_getspecific()</I> returns the thread-
specific data associated with the given key. If no
thread specific data is associated with the key, then
the value <I>NULL</I> is returned.
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<ul>
<li>pthread_getspecific() may be called from a thread-specific data
<H3><a name="pthreadkeydelete">2.9.25 pthread_key_delete</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_key_delete( pthread_key_t key )
This POSIX function should delete a thread-specific data
key previously returned by <I>pthread_key_create()</I>. However,
this function does nothing in the present implementation.
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><I>key</I>. The key to delete
</ul>
<p>
<b>Returned Values:</b>
<p>
<ul>
<li>Always returns <I>EINVAL</I>.
</ul>
<p>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexattrinit">2.9.26 pthread_mutexattr_init</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutexattr_init(pthread_mutexattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexattrdestroy">2.9.27 pthread_mutexattr_destroy</a></H3>
<p>
<b>Function Protoype:</b>
<p>
#include <pthread.h>
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexattrgetpshared">2.9.28 pthread_mutexattr_getpshared</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr,
int *pshared);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_getpshared()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexattrsetpshared">2.9.29 pthread_mutexattr_setpshared</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutexattr_setpshared()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexinit">2.9.30 pthread_mutex_init</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex,
pthread_mutexattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutex_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexdestrory">2.9.31 pthread_mutex_destroy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutex_destroy(pthread_mutex_t *mutex);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutex_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexlock">2.9.32 pthread_mutex_lock</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutex_lock()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutextrylock">2.9.33 pthread_mutex_trylock</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutex_trylock(pthread_mutex_t *mutex);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_mutex_trylock()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadmutexunlock">2.9.34 pthread_mutex_unlock</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_mutex_unlock(pthread_mutex_t *mutex);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
If successful, the <I>pthread_mutex_unlock()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadconaddrinit">2.9.35 pthread_condattr_init</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_condattr_init(pthread_condattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_condattr_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadocndattrdestroy">2.9.36 pthread_condattr_destroy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_condattr_destroy(pthread_condattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_condattr_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondinit">2.9.37 pthread_cond_init</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_cond_init()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadconddestroy">2.9.38 pthread_cond_destroy</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_cond_destroy()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondbroadcast">2.9.39 pthread_cond_broadcast</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_cond_broadcast(pthread_cond_t *cond);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_cond_broadcast()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondsignal">2.9.40 pthread_cond_signal</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_cond_signal(pthread_cond_t *dond);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
<p>
If successful, the <I>pthread_cond_signal()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondwait">2.9.41 pthread_cond_wait</a></H3>
<p>
<b>Function Prototype:</b>
<p>
#include <pthread.h>
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
<p>
<b>Description:</b>
<p>
<b>Input Parameters:</b>
<p>
<ul>
<li><code>To be provided</code>.</li>
</ul>
<p>
If successful, the <I>pthread_cond_wait()</I> function will return
zero (<I>OK</I>). Otherwise, an error number will be
returned to indicate the error:
<p>
<ul>
<li><code>To be provided</code>. </li>
</ul>
<b>Assumptions/Limitations:</b>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX
<H3><a name="pthreadcondtimedwait">2.9.42 pthread_cond_timedwait</a></H3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec *abstime);
</pre>
<p>
<b>Description:</b>
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
If successful, the <code>pthread_cond_timedwait()</code> function will return
zero (<code>OK</code>). Otherwise, an error number will be
returned to indicate the error:
</p>
<ul>
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrinit">2.9.43 pthread_barrierattr_init</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_init(FAR pthread_barrierattr_t *attr);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_init()</code> function will initialize a barrier
attribute object <code>attr</code> with the default value for all of the attributes
defined by the implementation.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>attr</code>. Barrier attributes to be initialized.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (<code>OK</code>) on success or <code>EINVAL</code> if <code>attr</code> is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrdestroy">2.9.44 pthread_barrierattr_destroy</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_destroy(FAR pthread_barrierattr_t *attr);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_destroy()</code> function will destroy a barrier attributes object.
A destroyed attributes object can be reinitialized using <code>pthread_barrierattr_init()</code>;
the results of otherwise referencing the object after it has been destroyed are undefined.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>attr</code>. Barrier attributes to be destroyed.
</li>
</ul>
<p>
<b>Returned Values:</b> 0 (OK) on success or EINVAL if attr is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrsetpshared">2.9.45 pthread_barrierattr_setpshared</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_setpshared(FAR pthread_barrierattr_t *attr, int pshared);
</pre>
<p>
<b>Description:</b>
The process-shared attribute is set to <code>PTHREAD_PROCESS_SHARED</code> to permit
a barrier to be operated upon by any thread that has access to the memory where the
barrier is allocated.
If the process-shared attribute is <code>PTHREAD_PROCESS_PRIVATE</code>, the barrier can
only be operated upon by threads created within the same process as the thread that
initialized the barrier.
If threads of different processes attempt to operate on such a barrier, the behavior is undefined.
The default value of the attribute is <code>PTHREAD_PROCESS_PRIVATE</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>attr</code>. Barrier attributes to be modified.</li>
<li><code>pshared</code>. The new value of the pshared attribute.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if either
<code>attr</code> is invalid or <code>pshared</code> is not one of
<code>PTHREAD_PROCESS_SHARED</code> or <code>PTHREAD_PROCESS_PRIVATE</code>.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierattrgetpshared">2.9.46 pthread_barrierattr_getpshared</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrierattr_getpshared(FAR const pthread_barrierattr_t *attr, FAR int *pshared);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrierattr_getpshared()</code> function will obtain the value of the
process-shared attribute from the attributes object referenced by <code>attr</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>attr</code>. Barrier attributes to be queried.</li>
<li><code>pshared</code>. The location to stored the current value of the pshared attribute.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if
either <code>attr</code> or <code>pshared</code> is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierinit">2.9.47 pthread_barrier_init</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_init(FAR pthread_barrier_t *barrier,
FAR const pthread_barrierattr_t *attr, unsigned int count);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_init()</code> function allocates any resources required to
use the barrier referenced by <code>barrier</code> and initialized the barrier with
the attributes referenced by <code>attr</code>.
If <code>attr</code> is NULL, the default barrier attributes will be used.
The results are undefined if <code>pthread_barrier_init()</code> is called when any
thread is blocked on the barrier.
The results are undefined if a barrier is used without first being initialized.
The results are undefined if <code>pthread_barrier_init()</code> is called specifying
an already initialized barrier.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li>
<code>barrier</code>.
The barrier to be initialized.
</li>
<li>
<code>attr</code>.
Barrier attributes to be used in the initialization.
</li>
<li>
<code>count</code>.
The count to be associated with the barrier.
The count argument specifies the number of threads that must call
<code>pthread_barrier_wait()</code> before any of them successfully return from the call.
The value specified by count must be greater than zero.
</li>
</ul>
<p>
<b>Returned Values:</b>0 (OK) on success or on of the following error numbers:
</p>
<ul>
<li>
<code>EAGAIN</code>.
The system lacks the necessary resources to initialize another barrier.
</li>
<li>
<code>EINVAL</code>.
The barrier reference is invalid, or the values specified by attr are invalid, or
the value specified by count is equal to zero.
</li>
<li>
<code>ENOMEM</code>.
Insufficient memory exists to initialize the barrier.
</li>
<li>
<code>EBUSY</code>.
The implementation has detected an attempt to reinitialize a barrier while it is in use.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierdestroy">2.9.48 pthread_barrier_destroy</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_destroy(FAR pthread_barrier_t *barrier);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_destroy()</code> function destroys the barrier referenced
by <code>barrie</code> and releases any resources used by the barrier.
The effect of subsequent use of the barrier is undefined until the barrier is
reinitialized by another call to <code>pthread_barrier_init()</code>.
The results are undefined if <code>pthread_barrier_destroy()</code> is called when
any thread is blocked on the barrier, or if this function is called with an
uninitialized barrier.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>barrier</code>. The barrier to be destroyed.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or on of the following error numbers:
</p>
<ul>
<li>
<code>EBUSY</code>.
The implementation has detected an attempt to destroy a barrier while it is in use.
</li>
<li>
<code>EINVAL</code>.
The value specified by barrier is invalid.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadbarrierwait">2.9.49 pthread_barrier_wait</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_barrier_wait(FAR pthread_barrier_t *barrier);
</pre>
<p>
<b>Description:</b>
The <code>pthread_barrier_wait()</code> function synchronizse participating
threads at the barrier referenced by <code>barrier</code>.
The calling thread is blocked until the required number of threads have called
<code>pthread_barrier_wait()</code> specifying the same <code>barrier</code>.
When the required number of threads have called <code>pthread_barrier_wait()</code>
specifying the <code>barrier</code>, the constant <code>PTHREAD_BARRIER_SERIAL_THREAD</code>
will be returned to one unspecified thread and zero will be returned to each of
the remaining threads.
At this point, the barrier will be reset to the state it had as a result of the most
recent <code>pthread_barrier_init()</code> function that referenced it.
</p>
<p>
The constant <code>PTHREAD_BARRIER_SERIAL_THREAD</code> is defined in
<code>pthread.h</code> and its value must be distinct from any other value
returned by <code>pthread_barrier_wait()</code>.
</p>
<p>
The results are undefined if this function is called with an uninitialized barrier.
</p>
<p>
If a signal is delivered to a thread blocked on a barrier, upon return from the
signal handler the thread will resume waiting at the barrier if the barrier wait
has not completed.
Otherwise, the thread will continue as normal from the completed barrier wait.
Until the thread in the signal handler returns from it, it is unspecified whether
other threads may proceed past the barrier once they have all reached it.
</p>
<p>
A thread that has blocked on a barrier will not prevent any unblocked thread that
is eligible to use the same processing resources from eventually making forward
progress in its execution.
Eligibility for processing resources will be determined by the scheduling policy.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>barrier</code>. The barrier on which to wait.</li>
</ul>
<p>
<b>Returned Values:</b> 0 (<code>OK</code>) on success or <code>EINVAL</code> if the barrier is not valid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadonce">2.9.50 pthread_once</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <pthread.h>
int pthread_once(FAR pthread_once_t *once_control, CODE void (*init_routine)(void));
</pre>
<p>
<b>Description:</b>
The first call to <code>pthread_once()</code> by any thread with a given
<code>once_control</code>, will call the <code>init_routine()</code> with no arguments.
Subsequent calls to <code>pthread_once()</code> with the same <code>once_control</code> will have no effect.
On return from <code>pthread_once()</code>, <code>init_routine()</code> will have completed.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>once_control</code>.
Determines if <code>init_routine()</code> should be called.
<code>once_control</code> should be declared and intialized as follows:
<ul><pre>pthread_once_t once_control = PTHREAD_ONCE_INIT;
</pre></ul>
<code>PTHREAD_ONCE_INIT</code> is defined in <code>pthread.h</code>.
</li>
<li>
<code>init_routine</code>.
The initialization routine that will be called once.
</li>
</ul>
<p>
<b>Returned Values:</b>
0 (OK) on success or EINVAL if either once_control or init_routine are invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadkill">2.9.51 pthread_kill</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <signal.h>
#include <pthread.h>
int pthread_kill(pthread_t thread, int signo)
</pre>
<p>
<b>Description:</b>
The <code>pthread_kill()</code> system call can be used to send any
signal to a thread. See <code>kill()</code> for further information
as this is just a simple wrapper around the <code>kill()</code>
function.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>thread</code>.
The id of the thread to receive the signal. Only positive, non-zero values of <code>tthread</code>t are supported.
</li>
<li>
<code>signo</code>.
The signal number to send. If <code>signo</code> is zero, no signal is sent, but all error checking is performed.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
On success, the signal was sent and zero is returned.
On error one of the following error numbers is returned.
</p>
<ul>
<li>
<code>EINVAL</code>.
An invalid signal was specified.
</li>
<li>
<code>EPERM</code>.
The thread does not have permission to send the signal to the target thread.
</li>
<li>
<code>ESRCH</code>.
No thread could be found corresponding to that specified by the given thread ID.
</li>
<li>
<code>ENOSYS</code>.
Do not support sending signals to process groups.
</li>
</ul>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
<h3><a name="pthreadsigmask">2.9.52 pthread_sigmask</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <signal.h>
#include <pthread.h>
int pthread_sigmask(int how, FAR const sigset_t *set, FAR sigset_t *oset);
</pre>
<p>
<b>Description:</b>
This function is a simple wrapper around <code>sigprocmask()</code>.
See the <code>sigprocmask()</code> function description for further information.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>how</code>. How the signal mast will be changed:
<ul>
<li>
<code>SIG_BLOCK</code>:
The resulting set is the union of the current set and the signal set pointed to by <code>set</code>.
</li>
<li>
<code>SIG_UNBLOCK</code>:
The resulting set is the intersection of the current set and the complement of the signal set pointed to by <code>set</code>.
</li>
<li>
<code>SIG_SETMASK</code>:
The resulting set is the signal set pointed to by <code>set</code>.
</li>
</ul>
</li>
<li>
<code>set</code>. Location of the new signal mask.
</li>
<li>
<code>oset</code>. Location to store the old signal mask.
</li>
</ul>
<p>
<b>Returned Values:</b>
</p>
<p>
0 (OK) on succes or EINVAL if <code>how</code> is invalid.
</p>
<p>
<b>Assumptions/Limitations:</b>
</p>
<p>
<b>POSIX Compatibility:</b> Comparable to the POSIX interface of the same name.
</p>
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
<h1><a name="Environ">2.10 Environment Variables</a></h1>
<p><b>Overview</b>.
NuttX supports environment variables that can be used to control the behavior of programs.
In the spirit of NuttX the environment variable behavior attempts to emulate the behavior of
environment variables in the mulit-processing OS:
</p>
<ul>
<li><b>Task environments</b>.
When a new task is created using <a href="#taskcreate">task_create</a>, the environment
of the child task is an inherited, exact copy of the environment of the parent.
However, after child task has been created, subsequent operations by the child task on
its environment does not alter the environment of the parent.
No do operations by the parent effect the child's environment.
The environments start identical but are independent and may diverge.
</li>
<li><b>Thread environments</b>.
When a pthread is created using <a href="#pthreadcreate">pthread_create</a>, the child
thread also inherits that envirnment of the parent.
However, the child does not recieve a copy of the environment but, rather, shares the same
environment.
Changes to the environment are visiable to all threads with the same parentage.
</li>
</ul>
<p><b>Programming Interfaces</b>.
The following environment variable programming interfaces are provided by Nuttx and are
described in detail in the following paragraphs.
</p>
<ul>
<li><a href="#getenv">2.10.1 <code>getenv</code></a></li>
<li><a href="#putenv">2.10.2 <code>putenv</code></a></li>
<li><a href="#clearenv">2.10.3 <code>clearenv</code></a></li>
<li><a href="#setenv">2.10.4 <code>setenv</code></a></li>
<li><a href="#unsetenv">2.10.5 <code>unsetenv</code></a></li>
</ul>
<p><b>Disabling Environment Variable Support</b>.
All support for environment variables can be disabled by setting <code>CONFIG_DISABLE_ENVIRONMENT</code>
in the board configuration file.
</p>
<h2><a name="getenv">2.10.1 <code>getenv</code></a></h2>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <stdlib.h>
FAR char *getenv(const char *name);
</pre>
<p>
<b>Description:</b>
The <code>getenv()</code> function searches the environment list for a string that
matches the string pointed to by <code>name</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>name</code>.
The name of the variable to find.
</li>
</ul>
<p>
<b>Returned Values:</b>
The value of the valiable (read-only) or NULL on failure.
</p>
<h2><a name="putenv">2.10.2 <code>putenv</code></a></h2>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <stdlib.h>
int putenv(char *string);
</pre>
<p>
<b>Description:</b>
The <code>putenv()</code> function adds or changes the value of environment variables.
The argument string is of the form <i>name=value</i>. If name does not already
exist in the environment, then string is added to the environment. If
name does exist, then the value of name in the environment is changed to
value.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>string</code>
name=value string describing the environment setting to add/modify.
</li>
</ul>
<p>
<b>Returned Values:</b>
Zero on sucess.
</p>
<h2><a name="clearenv">2.10.3 <code>clearenv</code></a></h2>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <stdlib.h>
int clearenv(void);
</pre>
<p>
<b>Description:</b>
The <code>clearenv()</code> function clears the environment of all name-value pairs
and sets the value of the external variable environ to NULL.
</p>
<p>
<b>Input Parameters:</b>
None
</p>
<p>
<b>Returned Values:</b>
Zero on success.
</p>
<h2><a name="setenv">2.10.4 <code>setenv</code></a></h2>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <stdlib.h>
int setenv(const char *name, const char *value, int overwrite);
</pre>
<p>
<b>Description:</b>
The <code>setenv()</code> function adds the variable <code>name</code> to the environment with the
specified <code>value</code> if the variable <code>name</code> does not exist. If the <code>name</code>
does exist in the environment, then its value is changed to <code>value</code> if <code>overwrite</code>
is non-zero; if <code>overwrite</code> is zero, then the value of <code>name</code> is unaltered.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>name</code>
The name of the variable to change.
</li>
<li>
<code>value</code>
The new value of the variable.
</li>
<li>
<code>value</code>
Replace any existing value if non-zero.
</li>
</ul>
<p>
<b>Returned Values:</b>
Zero on success.
</p>
<h2><a name="unsetenv">2.10.5 <code>unsetenv</code></a></h2>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <stdlib.h>
int unsetenv(const char *name);
</pre>
<p>
<b>Description:</b>
The <code>unsetenv()</code> function deletes the variable <code>name</code> from the environment.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li>
<code>name</code>
The name of the variable to delete.
</li>
</ul>
<p>
<b>Returned Values:</b>
Zero on success.
</p>
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
<h1><a name="FileSystem">2.11 File System Interfaces</a></h1>
<p><b>Overview</b>.
NuttX includes an optional, scalable file system.
This file-system may be omitted altogther; NuttX does not depend on the presence
of any file system.
</p>
<p><b>Pseudo Root File System</b>.
Or, a simple <i>in-memory</i>, <i>psuedo</i> file system can be enabled.
This simple file system can be enabled setting the CONFIG_NFILE_DESCRIPTORS
option to a non-zero value.
This is an <i>in-memory</i> file system because it does not require any
storage medium or block driver support.
Rather, file system contents are generated on-the-fly as referenced via
standard file system operations (open, close, read, write, etc.).
In this sense, the file system is <i>psuedo</i> file system (in the
same sense that the Linux <code>/proc</code> file system is also
referred to as a psuedo file system).
</p>
<p>
Any user supplied data or logic can be accessed via the psuedo-file system.
Built in support is provided for character and block drivers in the
<code>/dev</code> psuedo file system directory.
</p>
<p><b>Mounted File Systems</b>
The simple in-memory file system can be extended my mounting block
devices that provide access to true file systems backed up via some
mass storage device.
NuttX supports the standard <code>mount()</code> command that allows
a block driver to be bound to a mountpoint within the psuedo file system
and to a a file system.
At present, NuttX supports only the VFAT file system.
</p>
<p><b>Comparison to Linux</b>
From a programming perspective, the NuttX file system appears very similar
to a Linux file system.
However, there is a fundamental difference:
The NuttX root file system is a psuedo file system and true file systems may be
mounted in the psuedo file system.
In the typical Linux installation by comparison, the Linux root file system
is a true file system and psuedo file systems may be mounted in the true,
root file system.
The approach selected by NuttX is intended to support greater scalability
from the very tiny platform to the moderate platform.
</p>
<p><b>File System Interfaces</b>.
The NuttX file system simply supports a set of standard, file system APIs
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
(<code>open()</code>, <code>close()</code>, <code>read()</code>, <code>write</code>, etc.)
and a registration mechanism that allows devices drivers to a associated with <i>nodes</i>
in a file-system-like name space.
</p>
<h2><a name="driveroperations">2.11.1 Driver Operations</a></h2>
<ul><pre>
#include <fcntl.h>
int open(const char *path, int oflag, ...);
</pre></ul>
<ul><pre>
#include <unistd.h>
int close(int fd);
int dup(int fildes);
int dup2(int fildes1, int fildes2);
off_t lseek(int fd, off_t offset, int whence);
int read(int fd, void *buf, unsigned int nbytes);
int unlink(const char *path);
int write(int fd, const void *buf, unsigned int nbytes);
</pre></ul>
<ul><pre>
#include <sys/ioctl.h>
int ioctl(int fd, int req, unsigned long arg);
</pre></ul>
<h2><a name="directoryoperations">2.11.2 Directory Operations</a></h2>
<ul><pre>
#include <dirent.h>
int closedir(DIR *dirp);
FAR DIR *opendir(const char *path);
FAR struct dirent *readdir(FAR DIR *dirp);
int readdir_r(FAR DIR *dirp, FAR struct dirent *entry, FAR struct dirent **result);
void rewinddir(FAR DIR *dirp);
void seekdir(FAR DIR *dirp, int loc);
int telldir(FAR DIR *dirp);
</pre></ul>
<h2><a name="standardio">2.11.3 Standard I/O</a></h2>
<ul><pre>
#include <stdio.h>
int fclose(FILE *stream);
int fflush(FILE *stream);
int feof(FILE *stream); /* Prototyped but not implemented */
int ferror(FILE *stream); /* Prototyped but not implemented */
int fgetc(FILE *stream);
char *fgets(char *s, int n, FILE *stream);
FILE *fopen(const char *path, const char *type);
int fprintf(FILE *stream, const char *format, ...);
int fputc(int c, FILE *stream);
int fputs(const char *s, FILE *stream);
size_t fread(void *ptr, size_t size, size_t n_items, FILE *stream);
int fseek(FILE *stream, long int offset, int whence); /* Prototyped but not implemented */
size_t fwrite(const void *ptr, size_t size, size_t n_items, FILE *stream);
char *gets(char *s);
int printf(const char *format, ...);
int puts(const char *s);
int rename(const char *source, const char *target);
int sprintf(char *dest, const char *format, ...);
int ungetc(int c, FILE *stream);
int vprintf(const char *s, va_list ap);
int vfprintf(FILE *stream, const char *s, va_list ap);
int vsprintf(char *buf, const char *s, va_list ap);
int chdir(const char *path); /* Prototyped but not implemented */
FILE *fdopen(int fd, const char *type);
int fstat(int fd, FAR struct stat *buf); /* Prototyped but not implemented */
char *getcwd(FAR char *buf, size_t size); /* Prototyped but not implemented */
int mkdir(const char *path, mode_t mode);
int rmdir(const char *path);
int stat(const char *path, FAR struct stat *buf);
int statfs(const char *path, FAR struct statfs *buf); /* Prototyped but not implemented */
</pre></ul>
<h2>2.12 <a name="Network">Network Interfaces</a></h2>
<p>NuttX includes a simple interface layer based on uIP (see <a href="http://www.sics.se/~adam/uip/index.php/Main_Page">http://www.sics.se</a>).
NuttX supports subset of a standard socket interface to uIP.
These network feature can be enabled by settings in the architecture
<a href="NuttxPortingGuide.html#apndxconfigs">configuration file</a>.
Those socket APIs are discussed in the following paragraphs.</p>
<ul>
<li>
</li>
<li><a href="#socket">2.12.1 socket</a></li>
<li><a href="#bind">2.12.2 bind</a></li>
<li><a href="#connect">2.12.3 connect</a></li>
<li><a href="#listen">2.12.4 listen</a></li>
<li><a href="#accept">2.12.5 accept</a></li>
<li><a href="#send">2.12.6 send</a></li>
<li><a href="#sendto">2.12.7 sendto</a></li>
<li><a href="#recv">2.12.8 recv</a></li>
<li><a href="#recvfrom">2.12.9 recvfrom</a></li>
<li><a href="#setsockopt">2.12.10 setsockopt</a></li>
<li><a href="#getsockopt">2.12.11 getsockopt</a></li>
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
</ul>
<h3><a name="socket">2.12.1 <code>socket</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);
</pre>
<p>
<b>Description:</b>
socket() creates an endpoint for communication and returns a descriptor.
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>domain</code>: (see sys/socket.h)</li>
<li><code>type</code>: (see sys/socket.h)</li>
<li><code>protocol</code>: (see sys/socket.h)</li>
</ul>
<p>
<b>Returned Values:</b>
0 on success; -1 on error with<code>errno</code>set appropriately:
</p>
<ul>
<li><code>EACCES</code>.
Permission to create a socket of the specified type and/or protocol is denied.</li>
<li><code>EAFNOSUPPORT</code>.
The implementation does not support the specified address family.</li>
<li><code>EINVAL</code>.
Unknown protocol, or protocol family not available.</li>
<li><code>EMFILE</code>.
Process file table overflow.</li>
<li><code>ENFILE</code>
The system limit on the total number of open files has been reached.</li>
<li><code>ENOBUFS</code> or <code>ENOMEM</code>.
Insufficient memory is available. The socket cannot be created until sufficient resources are freed.</li>
<li><code>EPROTONOSUPPORT</code>.
The protocol type or the specified protocol is not supported within this domain.</li>
</ul>
<h3><a name="bind">2.12.2 <code>bind</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
</pre>
<p>
<b>Description:</b>
<code>bind()</code> gives the socket sockfd the local address <code>addr</code>.
<code>addr</code> is <code>addrlen</code> bytes long. Traditionally, this is called
"assigning a name to a socket." When a socket is created with <code>socket()</code>,
it exists in a name space (address family) but has no name assigned.
<p>
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>sockfd</code>: Socket descriptor from socket.</li>
<li><code>addr</code>: Socket local address.</li>
<li><code>addrlen</code>: Length of <code>addr</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
0 on success; -1 on error with<code>errno</code>set appropriately:
</p>
<ul>
<li><code>EACCES</code>
The address is protected, and the user is not the superuser.</li>
<li><code>EADDRINUSE</code>
The given address is already in use.</li>
<li><code>EBADF</code>
<code>sockfd</code> is not a valid descriptor.</li>
<li><code>EINVAL</code>
The socket is already bound to an address.</li>
<li><code>ENOTSOCK</code>
<code>sockfd</code> is a descriptor for a file, not a socket.</li>
</ul>
<h3><a name="connect">2.12.3 <code>connect</code></a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
</pre>
<p>
<b>Description:</b>
<code>connect()</code> connects the socket referred to by the file descriptor
<code>sockfd</code> to the address specified by <code>addr</code>.
The <code>addrlen</code> argument specifies the size of <code>addr</code>.
The format of the address in <code>addr</code> is determined by the address space
of the socket sockfd.
If the socket sockfd is of type SOCK_DGRAM then <code>addr</code> is the address
to which datagrams are sent by default, and the only address from which
datagrams are received. If the socket is of type SOCK_STREAM or
SOCK_SEQPACKET, this call attempts to make a connection to the socket
that is bound to the address specified by <code>addr</code>.
Generally, connection-based protocol sockets may successfully <code>connect()</code>
only once; connectionless protocol sockets may use <code>connect()</code> multiple
times to change their association. Connectionless sockets may dissolve
the association by connecting to an address with the sa_family member of
sockaddr set to AF_UNSPEC.
<p>
</p>
<p>
<b>Input Parameters:</b>
</p>
<p>
<ul>
<li><code>sockfd</code>: Socket descriptor returned by <code>socket()</code></li>
<li><code>addr</code>: Server address (form depends on type of socket)</li>
<li><code>addrlen</code>: Length of actual <code>addr</code></li>
</ul>
<p>
<b>Returned Values:</b>
0 on success; -1 on error with<code>errno</code>set appropriately:
</p>
<li><code>EACCES</code> or </code>EPERM</code>:
The user tried to connect to a broadcast address without having the
socket broadcast flag enabled or the connection request failed
because of a local firewall rule.</li>
<li><code>EADDRINUSE</code>
Local address is already in use.</li>
<li><code>EAFNOSUPPORT</code>
The passed address didn't have the correct address family in its
sa_family field.</li>
<li><code>EAGAIN</code>
No more free local ports or insufficient entries in the routing
cache. For PF_INET.</li>
<li><code>EALREADY</code>
The socket is non-blocking and a previous connection attempt has
not yet been completed.</li>
<li><code>EBADF</code>
The file descriptor is not a valid index in the descriptor table.</li>
<li><code>ECONNREFUSED</code>
No one listening on the remote address.</li>
<li><code>EFAULT</code>
The socket structure address is outside the user's address space.</li>
<li><code>EINPROGRESS</code>
The socket is non-blocking and the connection cannot be completed
immediately.</li>
<li><code>EINTR</code>
The system call was interrupted by a signal that was caught.</li>
<li><code>EISCONN</code>
The socket is already connected.</li>
<li><code>ENETUNREACH</code>
Network is unreachable.</li>
<li><code>ENOTSOCK</code>
The file descriptor is not associated with a socket.</li>
<li><code>ETIMEDOUT</code>
Timeout while attempting connection. The server may be too busy
to accept new connections.</li>
</ul>
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
<h3><a name="listen">2.12.4 listen</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
int listen(int sockfd, int backlog);
</pre>
<p>
<b>Description:</b>
To accept connections, a socket is first created with <code>socket()</code>, a
willingness to accept incoming connections and a queue limit for incoming
connections are specified with <code>listen()</code>, and then the connections are
accepted with <code>accept()</code>. The <code>listen()</coe> call applies only to sockets of
type <code>SOCK_STREAM</code> or <code>SOCK_SEQPACKET</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of the bound socket.</li>
<li><code>backlog</code>: The maximum length the queue of pending connections may grow.
If a connection request arrives with the queue full, the client may receive an error
with an indication of ECONNREFUSED or, if the underlying protocol supports retransmission,
the request may be ignored so that retries succeed.</li>
</ul>
<p>
<b>Returned Values:</b>
On success, zero is returned. On error, -1 is returned, and errno is set appropriately.
</p>
<ul>
<li><code>EADDRINUSE</code>: Another socket is already listening on the same port.</li>
<li><code>EBADF</code>: The argument <code>sockfd</code> is not a valid descriptor.</li>
<li><code>ENOTSOCK</code>: The argument <code>sockfd</code> is not a socket.</li>
<li><code>EOPNOTSUPP</code>: The socket is not of a type that supports the listen operation.</li>
</ul>
<h3><a name="accept">2.12.5 accept</a></h3>
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
</pre>
<p>
<b>Description:</b>
The <code>accept()</code> function is used with connection-based socket types
(<code>SOCK_STREAM</code>, <code>SOCK_SEQPACKET</code> and <code>SOCK_RDM</code>).
It extracts the first connection request on the queue of pending connections,
creates a new connected socket with most of the same properties as <code>sockfd</code>,
and allocates a new socket descriptor for the socket, which is returned. The
newly created socket is no longer in the listening state. The original
socket <code>sockfd</code> is unaffected by this call. Per file descriptor flags
are not inherited across an accept.
</p>
<p>
The <code>sockfd</code> argument is a socket descriptor that has been created with
<code>socket()</code>, bound to a local address with <code>bind()</code>, and is listening for
connections after a call to <code>listen()</code>.
</p>
<p>
On return, the <code>addr</code> structure is filled in with the address of the
connecting entity. The <code>addrlen</code> argument initially contains the size
of the structure pointed to by <code>addr</code>; on return it will contain the
actual length of the address returned.
</p>
<p>
If no pending connections are present on the queue, and the socket is
not marked as non-blocking, accept blocks the caller until a connection
is present. If the socket is marked non-blocking and no pending
connections are present on the queue, accept returns <code>EAGAIN</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of the listening socket.</li>
<li><code>addr</code>: Receives the address of the connecting client.</li>
<li><code>addrlen</code>: Input: allocated size of <code>addr</code>, Return: returned size of <code>addr</code>.</li>
</ul>
<p>
<b>Returned Values:</b>
Returns -1 on error. If it succeeds, it returns a non-negative integer
that is a descriptor for the accepted socket.
</p>
<ul>
<li><code>EAGAIN</code> or <code>EWOULDBLOCK</code>:
The socket is marked non-blocking and no connections are present to be accepted.</li>
<li><code>EBADF</code>:
The descriptor is invalid.</li>
<li><code>ENOTSOCK</code>:
The descriptor references a file, not a socket.</li>
<li><code>EOPNOTSUPP</code>:
The referenced socket is not of type <code>SOCK_STREAM</code>.</li>
<li><code>EINTR</code>:
The system call was interrupted by a signal that was caught before a valid connection arrived.</li>
<li><code>ECONNABORTED</code>:
A connection has been aborted.</li>
<li><code>EINVAL</code>:
Socket is not listening for connections.</li>
<li><code>EMFILE</code>:
The per-process limit of open file descriptors has been reached.</li>
<li><code>ENFILE</code>:
The system maximum for file descriptors has been reached.</li>
<li><code>EFAULT</code>:
The addr parameter is not in a writable part of the user address space.</li>
<li><code>ENOBUFS</code> or <code>ENOMEM</code>:
Not enough free memory.</li>
<li><code>EPROTO</code>:
Protocol error.</li>
<li><code>EPERM</code>:
Firewall rules forbid connection.</li>
</ul>
<h3><a name="send">2.12.6 <code>send</code></a></h3>
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
ssize_t send(int sockfd, const void *buf, size_t len, int flags);
</pre>
<p>
<b>Description:</b>
The <code>send()</code> call may be used only when the socket is in a connected state
(so that the intended recipient is known).
The only difference between <code>send()</code> and <code>write()</code> is the
presence of <code>flags</code>.
With <code>zero</code> flags parameter, <code>send()</code> is equivalent to
<code>write()</code>. Also, <code>send(s,buf,len,flags)</code> is
equivalent to <code>sendto(s,buf,len,flags,NULL,0)</code>.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of socket
<li><code>buf</code>: Data to send
<li><code>len</code>: Length of data to send
<li><code>flags</code>: Send flags
</ul>
<p>
<b>Returned Values:</b>
See <a href="#sendto"><code>sendto()</code></a>.
</p>
<h3><a name="sendto">2.12.7 <code>sendto</code></a></h3>
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen);
</pre>
<p>
<b>Description:</b>
If <code>sendto()</code> is used on a connection-mode (SOCK_STREAM, SOCK_SEQPACKET)
socket, the parameters to and tolen are ignored (and the error EISCONN
may be returned when they are not NULL and 0), and the error ENOTCONN is
returned when the socket was not actually connected.
<p>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of socket
<li><code>buf</code>: Data to send
<li><code>len</code>: Length of data to send
<li><code>flags</code>: Send flags
<li><code>to</code>: Address of recipient
<li><code>tolen</code>: The length of the address structure
</ul>
<p>
<b>Returned Values:</b>
On success, returns the number of characters sent. On error, -1 is returned, and<code>errno</code>is set appropriately:
</p>
<ul>
<li><code>EAGAIN</code> or <code>EWOULDBLOCK</code>.
The socket is marked non-blocking and the requested operation would block.
<li><code>EBADF</code>.
An invalid descriptor was specified.
<li><code>ECONNRESET</code>.
Connection reset by peer.
<li><code>EDESTADDRREQ</code>.
The socket is not connection-mode, and no peer address is set.
<li><code>EFAULT</code>.
An invalid user space address was specified for a parameter.
<li><code>EINTR</code>.
A signal occurred before any data was transmitted.
<li><code>EINVAL</code>.
Invalid argument passed.
<li><code>EISCONN</code>.
The connection-mode socket was connected already but a recipient
was specified. (Now either this error is returned, or the recipient
specification is ignored.)
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
<li><code>EMSGSIZE</code>.
The socket type requires that message be sent atomically, and the
size of the message to be sent made this impossible.
<li><code>ENOBUFS</code>.
The output queue for a network interface was full. This generally
indicates that the interface has stopped sending, but may be
caused by transient congestion.
<li><code>ENOMEM</code>.
No memory available.
<li><code>ENOTCONN</code>.
The socket is not connected, and no target has been given.
<li><code>ENOTSOCK</code>.
The argument s is not a socket.
<li><code>EOPNOTSUPP</code>.
Some bit in the flags argument is inappropriate for the socket type.
<li><code>EPIPE</code>.
The local end has been shut down on a connection oriented socket.
In this case the process will also receive a SIGPIPE unless
MSG_NOSIGNAL is set.
</ul>
<h3><a name="recv">2.12.8 <code>recv</code></a></h3>
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
ssize_t recv(int sockfd, void *buf, size_t len, int flags);
</pre>
<p>
<b>Description:</b>
The <code>recv()</code> call is identical to
<a href="#recvfrom"><code>recvfrom()</code></a> with a NULL
<code>from</code> parameter.
<p>
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
</li>
<li>sockfd</code>: Socket descriptor of socket </li>
<li>buf</code>: Buffer to receive data </li>
<li>len</code>: Length of buffer </li>
<li>flags</code>: Receive flags </li>
</ul>
<p>
<b>Returned Values:</b>
see <a href="#recvfrom"><code>recvfrom()</code></a>.
Zero on success.
</p>
<h3><a name="recvfrom">2.12.9 <code>recvfrom</code></a></h3>
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen);
</pre>
<p>
<b>Description:</b>
<code>recvfrom()</code> receives messages from a socket, and may be used to receive
data on a socket whether or not it is connection-oriented.
</p>
<p>
If <code>from</code> is not NULL, and the underlying protocol provides the source
address, this source address is filled in. The argument <code>fromlen</code>
initialized to the size of the buffer associated with <code>from</code>, and modified
on return to indicate the actual size of the address stored there.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of socket.</li>
<li><code>buf</code>: Buffer to receive data.</li>
<li><code>len</code>: Length of buffer.</li>
<li><code>flags</code>: Receive flags.</li>
<li><code>from</code>: Address of source.</li>
<li><code>fromlen</code>: The length of the address structure.</li>
</ul>
<p>
<b>Returned Values:</b>
On success, returns the number of characters sent.
On error, -1 is returned, and errno is set appropriately:
</p>
<ul>
<li><code>EAGAIN</code>.
The socket is marked non-blocking and the receive operation would block,
or a receive timeout had been set and the timeout expired before data
was received.
<li><code>EBADF</code>.
The argument <code>sockfd</code> is an invalid descriptor.
<li><code>ECONNREFUSED</code>.
A remote host refused to allow the network connection (typically because
it is not running the requested service).
<li><code>EFAULT</code>.
The receive buffer pointer(s) point outside the process's address space.
<li><code>EINTR</code>.
The receive was interrupted by delivery of a signal before any data were
available.
<li><code>EINVAL</code>.
Invalid argument passed.
<li><code>ENOMEM</code>.
Could not allocate memory.
<li><code>ENOTCONN</code>.
The socket is associated with a connection-oriented protocol and has
not been connected.
<li><code>ENOTSOCK</code>.
The argument <code>sockfd</code> does not refer to a socket.
</ul>
<h3><a name="setsockopt">2.12.10 <code>setsockopt</code></a></h3>
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
int setsockopt(int sockfd, int level, int option,
const void *value, socklen_t value_len);
</pre>
<p>
<b>Description:</b>
<code>setsockopt()</code> sets the option specified by the <code>option</code> argument,
at the protocol level specified by the <code>level</code> argument, to the value
pointed to by the <code>value</code> argument for the socket associated with the
file descriptor specified by the <code>sockfd</code> argument.
</p>
<p>
The <code>level</code> argument specifies the protocol level of the option. To set
options at the socket level, specify the level argument as SOL_SOCKET.
</p>
<p>
See <sys/socket.h> a complete list of values for the <code>option</code> argument.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd</code>: Socket descriptor of socket
<li><code>level</code>: Protocol level to set the option
<li><code>option</code>: identifies the option to set
<li><code>value</code>: Points to the argument value
<li><code>value_len</code>: The length of the argument value
</ul>
<p>
<b>Returned Values:</b>
On success, returns the number of characters sent.
On error, -1 is returned, and errno is set appropriately:
</p>
<ul>
<li><code>BADF</code>.
The <code>sockfd</code> argument is not a valid socket descriptor.
<li><code>DOM</code>.
The send and receive timeout values are too big to fit into the
timeout fields in the socket structure.
<li><code>INVAL</code>.
The specified option is invalid at the specified socket <code>level</code> or the
socket has been shut down.
<li><code>ISCONN</code>.
The socket is already connected, and a specified option cannot be set
while the socket is connected.
<li><code>NOPROTOOPT</code>.
The <code>option</code> is not supported by the protocol.
<li><code>NOTSOCK</code>.
The <code>sockfd</code> argument does not refer to a socket.
<li><code>NOMEM</code>.
There was insufficient memory available for the operation to complete.
<li><code>NOBUFS</code>.
Insufficient resources are available in the system to complete the call.
</ul>
<h3><a name="getsockopt">2.12.11 <code>getsockopt</code></a></h3>
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
<p>
<b>Function Prototype:</b>
</p>
<pre>
#include <sys/socket.h>
int getsockopt(int sockfd, int level, int option,
void *value, socklen_t *value_len);
</pre>
<p>
<b>Description:</b>
<code>getsockopt()</code> retrieve thse value for the option specified by the
<code>option</code> argument for the socket specified by the <code>sockfd</code> argument. If
the size of the option value is greater than <code>value_len</code>, the value
stored in the object pointed to by the <code>value</code> argument will be silently
truncated. Otherwise, the length pointed to by the <code>value_len</code> argument
will be modified to indicate the actual length of the<code>value</code>.
</p>
<p>
The <code>level</code> argument specifies the protocol level of the option. To
retrieve options at the socket level, specify the level argument as
SOL_SOCKET.
</p>
<p>
See <sys/socket.h> a complete list of values for the <code>option</code> argument.
</p>
<p>
<b>Input Parameters:</b>
</p>
<ul>
<li><code>sockfd Socket descriptor of socket
<li><code>level Protocol level to set the option
<li><code>option identifies the option to get
<li><code>value Points to the argument value
<li><code>value_len The length of the argument value
</ul>
<p>
<b>Returned Values:</b>
On success, returns the number of characters sent.
On error, -1 is returned, and errno is set appropriately:
</p>
<ul>
<li><code>BADF</code>.
The <code>sockfd</code> argument is not a valid socket descriptor.</li>
<li><code>INVAL</code>.
The specified option is invalid at the specified socket <code>level</code> or the
socket has been shutdown.</li>
<li><code>NOPROTOOPT</code>.
The <code>option</code> is not supported by the protocol.</li>
<li><code>NOTSOCK</code>.
The <code>sockfd</code> argument does not refer to a socket.</li>
<li><code>NOBUFS
Insufficient resources are available in the system to complete the call.</li>
</ul>
<hr>
<h1>3.0 <A NAME="Data_Structures">OS Data Structures</a></h1>
Many of the types used to communicate with NuttX are simple
scalar types. These types are used to provide architecture independence
of the OS from the application. The scalar types used at the NuttX
<ul>
<li>pid_t
<li>size_t
<li>sigset_t
<li>STATUS
<li>time_t
</ul>
Several of the types used to interface with NuttX are
structures that are intended to be hidden from the application.
From the standpoint of the application, these structures (and
structure pointers) should be treated as simple handles to reference
OS resources. These hidden structures include:
<ul>
<li>_TCB
<li>mqd_t
<li>sem_t
<li>WDOG_ID
<li>pthread_key_t
</ul>
<p>
In order to maintain portability, applications should not reference
specific elements within these hidden structures. These hidden
structures will not be described further in this user's manual.
A pointer to the thread-specific <I>errno</I>. value is available through a
function call:
<pre> int *get_errno_ptr( void )</pre>
<p>
<b>Description</b>: <I>osGetErrnorPtr()</I> returns a pointer to
This differs somewhat from the use for<code>errno</code>in a multi-threaded process environment:
Each pthread will have its own private copy of<code>errno</code>and the<code>errno</code>will not be shared
<p>
<b>Input Parameters</b>: None
<p>
<b>Returned Values</b>:
<p>
<ul>
<li>A pointer to the thread-specific <I>errno</I> value.
</ul>
<p>
main_t defines the type of a task entry point. main_t is declared
in sys/types.h as:
This structure is used to pass scheduling priorities to and from
NuttX;
NuttX and a user application:
struct timespec
{
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */
};
between NuttX and a MoBY application:
struct mq_attr {
size_t mq_maxmsg; /* Max number of messages in queue */
size_t mq_msgsize; /* Max message size */
unsigned mq_flags; /* Queue flags */
size_t mq_curmsgs; /* Number of messages currently in queue */
};
The following structure defines the action to take for given signal:
struct sigaction
{
union
{
void (*_sa_handler)(int);
void (*_sa_sigaction)(int, siginfo_t *, void *);
} sa_u;
sigset_t sa_mask;
int sa_flags;
};
#define sa_handler sa_u._sa_handler
#define sa_sigaction sa_u._sa_sigaction
The following types is used to pass parameters to/from signal
handlers:
typedef struct siginfo
{
int si_signo;
int si_code;
union sigval si_value;
} siginfo_t;
This defines the type of the struct siginfo si_value field and
is used to pass parameters with signals.
union sigval
{
int sival_int;
void *sival_ptr;
};
The following is used to attach a signal to a message queue to
notify a task when a message is available on a queue.
struct sigevent
{
int sigev_signo;
union sigval sigev_value;
int sigev_notify;
};
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
<H3>3.4.9 Watchdog Data Types</H3>
<p>
When a watchdog expires, the callback function with this
type is called:
</p>
<pre>
typedef void (*wdentry_t)(int argc, ...);
</pre>
<p>
Where argc is the number of uint32 type arguments that follow.
</p>
The arguments are passed as uint32 values.
For systems where the sizeof(pointer) < sizeof(uint32), the
following union defines the alignment of the pointer within the
uint32. For example, the SDCC MCS51 general pointer is
24-bits, but uint32 is 32-bits (of course).
</p>
<pre>
union wdparm_u
{
void *pvarg;
uint32 *dwarg;
};
typedef union wdparm_u wdparm_t;
</pre>
<p>
For most 32-bit systems, pointers and uint32 are the same size
For systems where sizeof(pointer) > sizeof(uint32), we will
have to do some redesign.
</p>
<li><a href="#accept">accept</a></li>
<li><a href="#clockgetres">clock_getres</a></li>
<li><a href="#clockgettime">clock_gettime</a></li>
<li><a href="#ClocksNTimers">Clocks</a></li>
<li><a href="#clocksettime">clock_settime</a></li>
<li><a href="#Data_Structures">Data structures</a></li>
<li><a href="#directoryoperations">Directory operations</a></li>
<li><a href="#driveroperations">Driver operations</a></li>
<li><a href="#gmtimer">gmtime_r</a></li>
<li><a href="#Introduction">Introduction</a>
<li><a href="#kill">kill</a></li>
<li><a href="#listen">listen</a></li>
<li><a href="#localtimer">localtime_r</a></li>
<li><a href="#mktime">mktime</a></li>
<li><a href="#mqclose">mq_close</a></li>
<li><a href="#mqgetattr">mq_getattr</a></li>
<li><a href="#mqnotify">mq_notify</a></li>
<li><a href="#mqopen">mq_open</a></li>
<li><a href="#mqreceive">mq_receive</a></li>
<li><a href="#mqsend">mq_send</a></li>
<li><a href="#mqsetattr">mq_setattr</a></li>
<li><a href="#mqtimedreceive">mq_timedreceive</a></li>
<li><a href="#mqtimedsend">mq_timedsend</a></li>
<li><a href="#pthreadattrdestroy">pthread_attr_destroy</a></li>
<li><a href="#pthreadattrgetinheritsched">pthread_attr_getinheritsched</a></li>
<li><a href="#pthreadattrgetschedparam">pthread_attr_getschedparam</a></li>
<li><a href="#pthreadattrgetschedpolicy">pthread_attr_getschedpolicy</a></li>
<li><a href="#pthreadattrgetstacksize">0 pthread_attr_getstacksize</a></li>
<li><a href="#pthreadattrinit">pthread_attr_init</a></li>
<li><a href="#pthreadattrsetinheritsched">pthread_attr_setinheritsched</a></li>
<li><a href="#pthreadattrsetschedparam">pthread_attr_setschedparam</a></li>
<li><a href="#pthreadattrsetschedpolity">pthread_attr_setschedpolicy</a></li>
<li><a href="#pthreadattrsetstacksize">pthread_attr_setstacksize</a></li>
<li><a href="#pthreadbarrierattrinit">pthread_barrierattr_init</a></li>
<li><a href="#pthreadbarrierattrdestroy">pthread_barrierattr_destroy</a></li>
<li><a href="#pthreadbarrierattrgetpshared">pthread_barrierattr_getpshared</a></li>
<li><a href="#pthreadbarrierattrsetpshared">pthread_barrierattr_setpshared</a></li>
<li><a href="#pthreadbarrierdestroy">pthread_barrier_destroy</a></li>
<li><a href="#pthreadbarrierinit">pthread_barrier_init</a></li>
<li><a href="#pthreadbarrierwait">pthread_barrier_wait</a></li>
<li><a href="#pthreadcancel">pthread_cancel</a></li>
<li><a href="#pthreadconaddrinit">pthread_condattr_init</a></li>
<li><a href="#pthreadcondbroadcast">pthread_cond_broadcast</a></li>
<li><a href="#pthreadconddestroy">pthread_cond_destroy</a></li>
<li><a href="#pthreadcondinit">pthread_cond_init</a></li>
<li><a href="#pthreadcondsignal">pthread_cond_signal</a></li>
<li><a href="#pthreadcondtimedwait">pthread_cond_timedwait</a></li>
<li><a href="#pthreadcondwait">pthread_cond_wait</a></li>
<li><a href="#pthreadcreate">pthread_create</a></li>
<li><a href="#pthreaddetach">pthread_detach</a></li>
<li><a href="#pthreadexit">pthread_exit</a></li>
<li><a href="#pthreadgetschedparam">pthread_getschedparam</a></li>
<li><a href="#pthreadgetspecific">pthread_getspecific</a></li>
<li><a href="#Pthread"><i>pthreads</i></a> share some resources.
<li><a href="#pthreadjoin">pthread_join</a></li>
<li><a href="#pthreadkeycreate">pthread_key_create</a></li>
<li><a href="#pthreadkeydelete">pthread_key_delete</a></li>
<li><a href="#pthreadmutexattrdestroy">pthread_mutexattr_destroy</a></li>
<li><a href="#pthreadmutexattrgetpshared">pthread_mutexattr_getpshared</a></li>
<li><a href="#pthreadmutexattrinit">pthread_mutexattr_init</a></li>
<li><a href="#pthreadmutexattrsetpshared">pthread_mutexattr_setpshared</a></li>
<li><a href="#pthreadmutexdestrory">pthread_mutex_destroy</a></li>
<li><a href="#pthreadmutexinit">pthread_mutex_init</a></li>
<li><a href="#pthreadmutexlock">pthread_mutex_lock</a></li>
<li><a href="#pthreadmutextrylock">pthread_mutex_trylock</a></li>
<li><a href="#pthreadmutexunlock">pthread_mutex_unlock</a></li>
<li><a href="#pthreadocndattrdestroy">pthread_condattr_destroy</a></li>
<li><a href="#pthreadself">pthread_self</a></li>
<li><a href="#pthreadsetcancelstate">pthread_setcancelstate</a></li>
<li><a href="#pthreadsetschedparam">pthread_setschedparam</a></li>
<li><a href="#pthreadsetspecific">pthread_setspecific</a></li>
<li><a href="#pthreadsigmask">pthread_sigmask</a></li>
<li><a href="#pthreadtestcancelstate">pthread_testcancelstate</a></li>
<li><a href="#pthreadyield">pthread_yield</a></li>
<li><a href="#recv">recv</a></li>
<li><a href="#recvfrom">recvfrom</a></li>
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
<li><a href="#schedgetparam">sched_getparam</a></li>
<li><a href="#schedgetprioritymax">sched_get_priority_max</a></li>
<li><a href="#schedgetprioritymin">sched_get_priority_min</a></li>
<li><a href="#schedgetrrinterval">sched_get_rr_interval</a></li>
<li><a href="#schedlockcount">sched_lockcount</a></li>
<li><a href="#schedlock">sched_lock</a></li>
<li><a href="#schedsetparam">sched_setparam</a></li>
<li><a href="#schedsetscheduler">sched_setscheduler</a></li>
<li><a href="#schedunlock">sched_unlock</a></li>
<li><a href="#sched_yield">sched_yield</a></li>
<li><a href="#Semaphores">Counting Semaphore Interfaces</a>
<li><a href="#semclose">sem_close</a></li>
<li><a href="#semdestroy">sem_destroy</a></li>
<li><a href="#semgetvalue">sem_getvalue</a></li>
<li><a href="#seminit">sem_init</a></li>
<li><a href="#semopen">sem_open</a></li>
<li><a href="#sempost">sem_post</a></li>
<li><a href="#semtrywait">sem_trywait</a></li>
<li><a href="#semunlink">sem_unlink</a></li>
<li><a href="#semwait">sem_wait</a></li>
<li><a href="#setgetscheduler">sched_getscheduler</a></li>
<li><a href="#send">send</a></li>
<li><a href="#sendto">sendto</a></li>
<li><a href="#setsockopt">setsockopt</a></li>
<li><a href="#sigaction">sigaction</a></li>
<li><a href="#sigaddset">sigaddset</a></li>
<li><a href="#sigdelset">sigdelset</a></li>
<li><a href="#sigemptyset">sigemptyset</a></li>
<li><a href="#sigfillset">sigfillset</a></li>
<li><a href="#sigismember">sigismember</a></li>
<li><a href="#Signals">Signal Interfaces</a>
<li><a href="#sigpending">sigpending</a></li>
<li><a href="#sigprocmask">sigprocmask</a></li>
<li><a href="#sigqueue">sigqueue</a></li>
<li><a href="#sigsuspend">sigsuspend</a></li>
<li><a href="#sigtimedwait">sigtimedwait</a></li>
<li><a href="#sigwaitinfo">sigwaitinfo</a></li>
<li><a href="#standardio">Standard I/O</a></li>
<li><a href="#taskactivate">task_activate</a></li>
<li><a href="#Task_Control">Task Control Interfaces</a>
<li><a href="#taskcreate">task_create</a></li>
<li><a href="#taskdelete">task_delete</a></li>
<li><a href="#taskinit">task_init</a></li>
<li><a href="#taskrestart">task_restart</a></li>
<li><a href="#Task_Schedule">Task Scheduling Interfaces</a>
<li><a href="#Task_Switch">Task Switching Interfaces</a>
<li><a href="#timercreate">timer_create</a></li>
<li><a href="#timerdelete">timer_delete</a></li>
<li><a href="#timergetoverrun">timer_getoverrun</a></li>
<li><a href="#timergettime">timer_gettime</a></li>
<li><a href="#ClocksNTimers">Timers</a></li>
<li><a href="#timersettime">timer_settime</a></li>
<li><a href="#Watchdogs">Watchdog Timer Interfaces</a>
<li><a href="#wdcancel">wd_cancel</a></li>
<li><a href="#wdcreate">wd_create</a></li>
<li><a href="#wddelete">wd_delete</a></li>
<li><a href="#wdgettime">wd_gettime</a></li>